idw – Informationsdienst Wissenschaft

Nachrichten, Termine, Experten

Grafik: idw-Logo
Grafik: idw-Logo

idw - Informationsdienst
Wissenschaft

Science Video Project
idw-Abo

idw-News App:

AppStore

Google Play Store



Instance:
Share on: 
12/03/2019 12:58

Elektronen-Rangelei in Nanostrukturen aus Kohlenstoff

Dr. Boris Pawlowski Presse, Kommunikation und Marketing
Christian-Albrechts-Universität zu Kiel

    Physiker aus Kiel und Kopenhagen klären das Verhalten von Elektronen in Graphen-Nanobändern auf

    Um elektronische Bauteile weiter zu verkleinern und damit Geräte wie Laptop oder Smartphone schneller und leistungsfähiger zu machen, braucht es neue Materialien. In dieser Hinsicht vielversprechend sind winzige Nanostrukturen des neuartigen Werkstoffs Graphen. Dieser besteht aus einer einzigen Atomlage Kohlenstoff und hat unter anderem eine hohe elektrische Leitfähigkeit. Allerdings zeigen solche mikroskopisch kleinen Nanostrukturen bedingt durch die räumliche Einschränkung ein stark verändertes elektronisches Verhalten. Mit einem aufwändigen Rechenmodell gelang es einem Team unter Leitung von Professor Michael Bonitz vom Institut für Theoretische Physik und Astrophysik (ITAP) der Christian-Albrechts-Universität zu Kiel (CAU), die Eigenschaften der Elektronen in diesen besonderen Nanostrukturen präzise zu simulieren und aufzuklären. Diese Kenntnisse sind entscheidend für den potenziellen Einsatz von Nanostrukturen aus Graphen in elektronischen Bauteilen.

    Präzise Simulation der Eigenschaften von Elektronen in Nanostrukturen
    Zwei Forschungsteams ist es im vergangenen Jahr unabhängig voneinander gelungen, heterogene schmale Kohlenstoff-Nanobänder herzustellen und die Elektronen-Energien darin auszumessen. Bei den Bändern wechseln sich verschieden breite Bereiche regelmäßig ab. Dadurch entstehen unterschiedliche Energiezustände mit einer eigenen elektronischen Struktur. „In theoretischen Modellen konnten die Messergebnisse aber nicht vollständig reproduziert werden“, erklärt Bonitz, der den Lehrstuhl für statistische Physik am ITAP leitet. Zusammen mit seinem Doktoranden Jan-Philip Joost und dem dänischen Kollegen Professor Antti-Pekka Jauho von der Technischen Universität Dänemark (DTU) entwickelte er ein verbessertes Modell und erreichte damit eine hervorragende Übereinstimmung mit den Experimenten. Die theoretischen Resultate stellen die Physiker in der aktuellen Ausgabe der renommierten Fachzeitschrift Nano Letters vor.

    Grundlage für die neuen und präziseren Computersimulationen war die Annahme, dass die Abweichungen zwischen Experiment und bisherigen Modellen durch die gegenseitige Abstoßung der Elektronen bedingt war. Diese sogenannte Coulomb-Wechselwirkung gibt es zwar auch in Metallen, aber in den kleinen Kohlenstoff-Nanostrukturen ist der Effekt viel größer. Die Elektronen werden aus den ursprünglichen Energiezuständen herausgestoßen und müssen sich andere Plätze ‚suchen’, wie Bonitz verdeutlicht: „Wir konnten nachweisen, dass Korrelationseffekte durch die Coulomb-Wechselwirkung der Elektronen einen zum Teil dramatischen Einfluss auf das lokale Energiespektrum haben“.

    Form der Nanobänder bedingt die elektronische Eigenschaften
    Wie die zulässigen Energiewerte der Elektronen von der Länge, Breite und Form der Nanostrukturen abhängt, konnte durch Untersuchung weiterer Nanobänder aufgeklärt werden. „Je nachdem wie man die Geometrie der Nanobänder wählt, welche Breite sie haben und wie sich die Breite ändert, ändert sich auch das Energiespektrum“, ergänzt Joost. „Unsere neuen Daten ermöglichen erstmals präzise Vorhersagen, wie sich das Energiespektrum durch die gezielte Variation der Form der Nanobänder steuern lässt”, sagt Jauho von der DTU in Kopenhagen. Die Forscher hoffen, dass diese Vorhersagen nun auch experimentell überprüft werden und zur Entwicklung neuer Nanostrukturen führen. Derartige Systeme können einen entscheidenden Beitrag zur weiteren Miniaturisierung der Elektronik liefern.

    Originalpublikation:
    Jan-Philip Joost, Antti-Pekka Jauho, Michael Bonitz, Correlated Topological States in Graphene Nanoribbon Heterostructures, Nano Letters (2019)
    DOI:10.1021/acs.nanolett.9b04075
    https://pubs.acs.org/articlesonrequest/AOR-cxJ6Abf9gQsphD6q3TCH

    Fotos stehen zum Download bereit:
    https://www.uni-kiel.de/de/pressemitteilungen/2019/375-Graphen.jpg
    Bildunterschrift: Das Graphen-Nanoband (Mitte) besteht aus einer einzigen Lage wabenförmig angeordneter Kohlenstoffatome. Das Band ist nur wenige Kohlenstoffatome breit und besitzt, je nach Form und Breite, unterschiedliche elektrische Eigenschaften. Die lokale Zustandsdichte der Elektronen ist an den Rändern erhöht, wie die dunkelroten Flächen in den Kästen zeigen.
    © Jan-Philip Joost, AG Bonitz

    Kontakt:
    Prof. Dr. Michael Bonitz
    Institut für Theoretische Physik und Astrophysik
    Tel.: 0431-880-4122
    E-Mail: bonitz@theo-physik.uni-kiel.de
    Web: www.theo-physik.uni-kiel.de/~bonitz

    Über den Forschungsschwerpunkt KiNSIS
    Details, die nur Millionstel Millimeter groß sind: Damit beschäftigt sich der Forschungsschwerpunkt »Nanowissenschaften und Oberflächenforschung« (Kiel Nano, Surface and Interface Science – KiNSIS) an der Christian-Albrechts-Universität zu Kiel (CAU). Im Nanokosmos herrschen andere, nämlich quantenphysikalische, Gesetze als in der makroskopischen Welt. Durch eine intensive interdisziplinäre Zusammenarbeit zwischen Physik, Chemie, Ingenieurwissenschaften und Life Sciences zielt der Schwerpunkt darauf ab, die Systeme in dieser Dimension zu verstehen und die Erkenntnisse anwendungsbezogen umzusetzen. Molekulare Maschinen, neuartige Sensoren, bionische Materialien, Quantencomputer, fortschrittliche Therapien und vieles mehr können daraus entstehen. Mehr Informationen auf www.kinsis.uni-kiel.de

    Christian-Albrechts-Universität zu Kiel
    Presse, Kommunikation und Marketing, Dr. Boris Pawlowski, Text: Kerstin Nees
    Postanschrift: D-24098 Kiel, Telefon: (0431) 880-2104, Telefax: (0431) 880-1355
    E-Mail: presse@uv.uni-kiel.de Internet: www.uni-kiel.de Twitter: www.twitter.com/kieluni
    Facebook: www.facebook.com/kieluni Instagram: www.instagram.com/kieluni


    Contact for scientific information:

    Prof. Dr. Michael Bonitz
    Institut für Theoretische Physik und Astrophysik
    Tel.: 0431-880-4122
    E.Mail: bonitz@theo-physik.uni-kiel.de
    Web: www.theo-physik.uni-kiel.de/~bonitz


    Original publication:

    Jan-Philip Joost, Antti-Pekka Jauho, Michael Bonitz, Correlated Topological States in Graphene Nanoribbon Heterostructures, Nano Letters (2019)
    DOI:10.1021/acs.nanolett.9b04075, https://pubs.acs.org/articlesonrequest/AOR-cxJ6Abf9gQsphD6q3TCH


    More information:

    https://www.uni-kiel.de/de/detailansicht/news/375-graphen


    Images

    Das Graphen-Nanoband (Mitte) besteht aus einer einzigen Lage wabenförmig angeordneter Kohlenstoffatome und besitzt, je nach Form und Breite, unterschiedliche elektrische Eigenschaften.
    Das Graphen-Nanoband (Mitte) besteht aus einer einzigen Lage wabenförmig angeordneter Kohlenstoffato ...
    © Jan-Philip Joost, AG Bonitz
    None


    Criteria of this press release:
    Journalists, Scientists and scholars
    Materials sciences, Physics / astronomy
    transregional, national
    Research results, Scientific Publications
    German


     

    Help

    Search / advanced search of the idw archives
    Combination of search terms

    You can combine search terms with and, or and/or not, e.g. Philo not logy.

    Brackets

    You can use brackets to separate combinations from each other, e.g. (Philo not logy) or (Psycho and logy).

    Phrases

    Coherent groups of words will be located as complete phrases if you put them into quotation marks, e.g. “Federal Republic of Germany”.

    Selection criteria

    You can also use the advanced search without entering search terms. It will then follow the criteria you have selected (e.g. country or subject area).

    If you have not selected any criteria in a given category, the entire category will be searched (e.g. all subject areas or all countries).