idw – Informationsdienst Wissenschaft

Nachrichten, Termine, Experten

Grafik: idw-Logo
Grafik: idw-Logo

idw - Informationsdienst
Wissenschaft

Science Video Project
idw-Abo

idw-News App:

AppStore

Google Play Store



Instance:
Share on: 
12/23/2019 17:38

Rechnen mit Molekülen: Großer Schritt in Richtung einer neuen Computerarchitektur

Dr. Boris Pawlowski Presse, Kommunikation und Marketing
Christian-Albrechts-Universität zu Kiel

    Internationales Forschungsteam unter Kieler Leitung baut stabile schaltbare Moleküle für die Spintronik

    Schnellere Datenverarbeitung, weniger Stromverbrauch und höhere Integrationsdichten – die sogenannte Spintronik hätte im Vergleich zur herkömmlichen Mikroelektronik zahlreiche Vorteile. Hierbei wird nicht nur die elektrische Ladung der Elektronen genutzt, um Informationen zu transportieren, zu speichern und zu verarbeiten, sondern auch ihre magnetischen Eigenschaften – der „Spin“. Das ermöglicht darüber hinaus nichtflüchtige Datenspeicher: Daten bleiben auch dann erhalten, wenn ein Rechner nicht mit Strom versorgt wird. Das Forschungsfeld der Molekularen Spintronik versucht Datenspeicher weiter zu verkleinern, durch die Kontrolle des Spins in einzelnen Molekülen. Die Informationsverarbeitung erfolgt darüber, dass Moleküle zwischen zwei verschiedenen Spinzuständen hin- und hergeschaltet werden können.

    Einem internationalen Forschungsteam unter der Leitung von Chemikern und Physikern der Christian-Albrechts-Universität zu Kiel (CAU) ist es jetzt gelungen, einzelne Moleküle mit stabil schaltbaren Spin-Zuständen zu bauen und auf einer Oberfläche anzubringen. Konventionelle organische Moleküle verlieren auf Oberflächen normalerweise ihre Funktionalität. Ihre Ergebnisse sind heute in der aktuellen Ausgabe des renommierten Fachmagazins „Nature Nanotechnology“ erschienen.

    Moleküle sind die kleinsten, stabilen Einheiten, die man mit atomarer Präzision und genau definierten Eigenschaften herstellen kann. Außerdem lassen sich Billionen von exakt gleichen molekularen Bauteilen synthetisieren. Ihre Reaktion auf elektrische oder optische Anregung und die maßgeschneiderte chemische und physikalische Funktionalität machen sie zu einzigartigen Kandidaten für die Spintronik, um neue Klassen von elektronischen Bauteilen zu realisieren. „Mit unserem neuen Spinschalter haben wir in einem Molekül erreicht, wozu man in der herkömmlichen Elektronik mehrere Komponenten wie Transistoren und Widerstände braucht. Das ist ein großer Schritt hin zu einer weiteren Miniaturisierung“, erklären Dr. Manuel Gruber (Experimentalphysik) und Prof. Dr. Rainer Herges (Organische Chemie) von der Universität Kiel. Außerdem waren Partner am französischen Elektronen-Synchrotron SOLEIL und des Swiss Light Source-Synchroton am Paul Scherrer Institut in der Schweiz beteiligt.

    Die molekularen Spinschalter, die das interdisziplinäre Forschungsteam entwickelt hat, zeigen nun auch als Einzelmoleküle Spinzustände, die für mehrere Tage stabil sind. „Wir haben dafür einen Trick genutzt, der den grundlegenden und kleinsten Schalteinheiten im Computer gleicht. In diesen sogenannten Flip-Flops ist das Ausgangsignal zurück gekoppelt zum Eingang um zwei verschiedene Schaltzustände – 0 und 1 - zu realisieren“, erklärt Physiker Dr. Manuel Gruber von der CAU. Die neu entwickelten Moleküle besitzen drei Eigenschaften, die jeweils in solchen Schaltungen miteinander gekoppelt sind und zwischen zwei Zuständen wechseln können: ihre Geometrie (flach oder gebogen), die Koordination mit weiteren Atomen (koordiniert oder nicht-koordiniert) und ihr Spinzustand (hoch oder niedrig). Nur zwei Kombinationen der drei Eigenschaften sind stabil und verstärken sich gegenseitig.

    Mit einem Stromstoß lässt sich zwischen den beiden Zuständen der Moleküle hin- und herschalten. Dazu wurden die Moleküle durch Verdampfen auf einer Metalloberfläche angebracht, wo sie sich selbstständig in einer regelmäßigen, geordneten Schicht nebeneinander anordneten. In dieser Anordnung lässt sich mit der atomar feinen Metallspitze eines ultrahoch auflösenden Rastertunnelmikroskops jedem einzelnen Molekül ein extrem kleinen Stromstoß versetzen. Indem entweder eine positive oder eine negative Spannung angelegt wird, lässt sich zwischen beiden Zuständen schalten.

    In einem nächsten Schritt wollen die Wissenschaftler diese molekularen Spinschalter miteinander zu komplizierteren, elektronischen Schaltungen verknüpfen, um einfache Computeroperationen durchführen zu können.

    Die Arbeit entstand im Rahmen des Sonderforschungsbereichs 677 „Funktion durch Schalten“, der 2007-2019 von der Deutschen Forschungsgemeinschaft an der CAU gefördert wurde.

    Originalpublikation:
    Alexander Köbke, Florian Gutzeit, Fynn Röhricht, Alexander Schlimm, Jan Grunwald, Felix Tuczek, Michal Studniarek, Danilo Longo, Fadi Choueikani, Edwige Otero, Philippe Ohresser, Sebastian Rohlf, Sven Johannsen, Florian Diekmann, Kai Rossnagel, Alexander Weismann, Torben Jasper-Toennies, Christian Näther, Rainer Herges, Richard Berndt, Manuel Gruber, Reversible coordination-induced spin-state switching in complexes on metal surfaces, Nature Nanotechnology (2019), DOI: 10.1038/s41565-019-0594-8
    https://www.nature.com/articles/s41565-019-0594-8

    Bildmaterial steht zum Download bereit:

    https://www.uni-kiel.de/de/pressemitteilungen/2019/414-spintronik-1.jpg
    Bildunterschrift: Mit einem winzigen Stromstoß über die Spitze eines Rastertunnelmikroskops lassen sich die neu entwickelten Moleküle schalten und verändern dadurch ihren Spinzustand.
    © Jan-Simon von Glasenapp und Rainer Herges

    https://www.uni-kiel.de/de/pressemitteilungen/2019/414-Spintronik-2.jpg
    Bildunterschrift: Das neue Molekül hat drei Eigenschaften, die mit einander gekoppelt sind. Nur zwei Kombinationen sind stabil. Mit Elektronen oder Licht kann man zwischen den beiden Zuständen hin und herschalten.
    © Prof. Dr. Rainer Herges

    Kontakt:
    Prof. Dr. Rainer Herges
    Institut für Organische Chemie
    Tel. +49 (0)431 880 2440
    Mail: rherges@oc.uni-kiel.de
    Web: https://www.otto-diels-institut.de

    Dr. rer. nat. Manuel Gruber
    Oberflächenphysik
    Tel. +49 (0)431 880 5091
    Mail: gruber@physik.uni-kiel.de
    Web: http://www.ieap.uni-kiel.de/surface

    Details, die nur Millionstel Millimeter groß sind: Damit beschäftigt sich der Forschungsschwerpunkt »Nanowissenschaften und Oberflächenforschung« (Kiel Nano, Surface and Interface Science – KiNSIS) an der Christian-Albrechts-Universität zu Kiel (CAU). Im Nanokosmos herrschen andere, nämlich quantenphysikalische, Gesetze als in der makroskopischen Welt. Durch eine intensive interdisziplinäre Zusammenarbeit zwischen Physik, Chemie, Ingenieurwissenschaften und Life Sciences zielt der Schwerpunkt darauf ab, die Systeme in dieser Dimension zu verstehen und die Erkenntnisse anwendungsbezogen umzusetzen. Molekulare Maschinen, neuartige Sensoren, bionische Materialien, Quantencomputer, fortschrittliche Therapien und vieles mehr können daraus entstehen. Mehr Informationen auf www.kinsis.uni-kiel.de

    Christian-Albrechts-Universität zu Kiel
    Presse, Kommunikation und Marketing, Dr. Boris Pawlowski
    Postanschrift: D-24098 Kiel, Telefon: (0431) 880-2104, Telefax: (0431) 880-1355
    E-Mail: presse@uv.uni-kiel.de Internet: www.uni-kiel.de Twitter: www.twitter.com/kieluni
    Facebook: www.facebook.com/kieluni Instagram: www.instagram.com/kieluni


    Contact for scientific information:

    Prof. Dr. Rainer Herges
    Institut für Organische Chemie
    Tel. +49 (0)431 880 2440
    Mail: rherges@oc.uni-kiel.de
    Web: https://www.otto-diels-institut.de

    Dr. rer. nat. Manuel Gruber
    Oberflächenphysik
    Tel. +49 (0)431 880 5091
    Mail: gruber@physik.uni-kiel.de
    Web: http://www.ieap.uni-kiel.de/surface


    Original publication:

    Alexander Köbke, Florian Gutzeit, Fynn Röhricht, Alexander Schlimm, Jan Grunwald, Felix Tuczek, Michal Studniarek, Danilo Longo, Fadi Choueikani, Edwige Otero, Philippe Ohresser, Sebastian Rohlf, Sven Johannsen, Florian Diekmann, Kai Rossnagel, Alexander Weismann, Torben Jasper-Toennies, Christian Näther, Rainer Herges, Richard Berndt, Manuel Gruber, Reversible coordination-induced spin-state switching in complexes on metal surfaces, Nature Nanotechnology (2019), DOI: 10.1038/s41565-019-0594-8
    https://www.nature.com/articles/s41565-019-0594-8


    More information:

    https://www.uni-kiel.de/de/detailansicht/news/414-spintronik


    Images

    Mit einem winzigen Stromstoß über die Spitze eines Rastertunnelmikroskops lassen sich die neu entwickelten Moleküle schalten und verändern dadurch ihren Spinzustand.
    Mit einem winzigen Stromstoß über die Spitze eines Rastertunnelmikroskops lassen sich die neu entwic ...
    © Jan-Simon von Glasenapp und Rainer Herges
    None

    Das neue Molekül hat drei Eigenschaften, die mit einander gekoppelt sind. Nur zwei Kombinationen sind stabil. Mit Elektronen oder Licht kann man zwischen den beiden Zuständen hin und herschalten.
    Das neue Molekül hat drei Eigenschaften, die mit einander gekoppelt sind. Nur zwei Kombinationen sin ...
    © Rainer Herges
    None


    Criteria of this press release:
    Journalists, Scientists and scholars
    Chemistry, Physics / astronomy
    transregional, national
    Research results, Scientific Publications
    German


     

    Help

    Search / advanced search of the idw archives
    Combination of search terms

    You can combine search terms with and, or and/or not, e.g. Philo not logy.

    Brackets

    You can use brackets to separate combinations from each other, e.g. (Philo not logy) or (Psycho and logy).

    Phrases

    Coherent groups of words will be located as complete phrases if you put them into quotation marks, e.g. “Federal Republic of Germany”.

    Selection criteria

    You can also use the advanced search without entering search terms. It will then follow the criteria you have selected (e.g. country or subject area).

    If you have not selected any criteria in a given category, the entire category will be searched (e.g. all subject areas or all countries).