idw – Informationsdienst Wissenschaft

Nachrichten, Termine, Experten

Grafik: idw-Logo
Grafik: idw-Logo

idw - Informationsdienst
Wissenschaft

Science Video Project
idw-Abo

idw-News App:

AppStore

Google Play Store



Instance:
Share on: 
04/21/2020 09:37

Künstliche Intelligenz hilft Proteine erkennen

Meike Drießen Dezernat Hochschulkommunikation
Ruhr-Universität Bochum

    Veränderungen in Proteinen können die Ursache für Krankheiten wie Krebs, Alzheimer oder Parkinson sein. Zwei neue Projekte in der Proteinforschung der Ruhr-Universität Bochum (RUB) sollen die Analyse im Hochdurchsatz treffsicherer und schneller machen. Die Medizinische Fakultät der RUB fördert in ihrem Forum-Förderprogramm die Vorbereitung einer breiteren Datenbasis zum Abgleich veränderter Proteine mit rund 66.000 Euro. Das Bundesministerium für Bildung und Forschung gibt 230.000 Euro für ein darauf aufbauendes Projekt, in dem Deep-Learning-Methoden helfen sollen, die Proteinerkennung effizienter zu machen.

    Erkannt wird nur, was in der Datenbank ist

    Die Massenspektrometrie ist eine Standardmethode für die Analyse von Proteinen. Proteine aus komplexen Proben werden zunächst vorverdaut und in Stücke geschnitten. Die Stücke, sogenannte Peptide, werden dann im Hochdurchsatz analysiert, indem die gemessenen Spektren mit theoretischen Spektren von Peptiden in einer Datenbank verglichen werden. „Mit diesem Ansatz kann man aber nur die Peptide identifizieren, die auch in der zugrunde liegenden Datenbank enthalten sind“, verdeutlicht Projektleiter Dr. Julian Uszkoreit. Varianten oder unbekannte Peptide werden nicht erkannt.

    Mehr Daten, größere Unschärfe

    Eine Vielzahl von bekannten Varianten ist in der meistgenutzten Datenbank, der Uniprot KB, sogar schon verzeichnet. Allerdings werden sie nur selten bei der Identifikation von Peptiden verwendet. Zum einen ist das Herunterladen der nötigen Daten für Endnutzer kompliziert. Zum anderen führt die Berücksichtigung aller Varianten zu einer stark vergrößerten Suchdatenbank und damit zu statistischen Problemen: Da man beim Abgleich der gemessenen Spektren mit denen der Datenbank nur statistische Wahrscheinlichkeiten einer Übereinstimmung ermittelt, wird die Suche bei einer sehr großen Datenbank unschärfer. „Man findet einfach immer ein Spektrum, das einigermaßen passt, und muss deswegen den Schwellenwert für einen Treffer erhöhen“, erläutert Uszkoreit. „Im Endeffekt kann man dadurch weniger Peptide statistisch signifikant identifizieren.“

    Im Forum-Projekt „Verbesserung der MS/MS-basierten Peptididentifikation durch die Nutzung annotierter Sequenzvarianten und -modifikationen“ wollen die Forscher ein Tool entwickeln, das den Export der großen Datenbank vereinfacht. Außerdem wollen sie das Problem der Unschärfe angehen. Ihr Ansatz dafür ist wesentlich rechenaufwändiger als der bisherige, weswegen das Team auf eine cloudbasierte Lösung setzt. „Für diesen Ansatz muss eine Datenbank mit allen berücksichtigten verdauten Peptiden erstellt werden“, so Julian Uszkoreit. „In dieser Datenbank kann nach den Gewichten der Peptide gesucht werden, was bis dato nicht möglich ist und nicht nur für die beschriebene Anwendung nützlich ist, sondern einen erheblichen Mehrwert für die gesamte Proteomics-Community haben kann.“

    Auch ganz neue Peptidsequenzen erkennen

    Das Projekt „Deep Learning for Protein Variants Detection“, kurz Deprovideo, setzt genau dort an und soll helfen, die großen Datenmengen der Proteindatenbank schneller und treffsicherer zu nutzen. Dabei hilft die Methode des Deep Learning. „Es gibt schon Suchmaschinen, weil vorhersagbar ist, wo die Ausschläge im Spektrum für ein bestimmtes Peptid sind“, erklärt Dr. Martin Eisenacher, der Leiter des Projekts. „Wir wollen dahin kommen, dass man durch eine Vorhersage davon, wie hoch diese Ausschläge sind, eine sensitivere Peptididentifizierung ermöglicht.“

    Spezielle Deep-Learning-Algorithmen sollen helfen, die Peptidsequenzen von aufgenommenen Spektren ohne Datenbankinformationen mittels einer sogenannten De-novo-Strategie zu identifizieren. Hierdurch können bisher unbekannte Varianten bestimmt werden, welche womöglich weder aus genetischen Varianten hervorgehen noch durch andere Proteomikmethoden bestimmt werden konnten. Die Algorithmen sollen mit großen Datenmengen trainiert werden, die in öffentlichen Datenbanken liegen. So sollen die Spektren von möglichst vielen Maschinen erkannt werden können.

    Alle im Projekt erstellten Softwaretools und Modelle werden der Allgemeinheit zur Verfügung gestellt.

    Pressekontakt

    Dr. Julian Uszkoreit
    Medizinisches Proteom-Center
    Medizinische Fakultät
    Ruhr-Universität Bochum
    Tel.: +49 234 32 18109
    E-Mail: julian.uszkoreit@rub.de


    Contact for scientific information:

    Dr. Julian Uszkoreit
    Medizinisches Proteom-Center
    Medizinische Fakultät
    Ruhr-Universität Bochum
    Tel.: +49 234 32 18109
    E-Mail: julian.uszkoreit@rub.de


    Images

    Criteria of this press release:
    Journalists
    Biology, Information technology, Medicine
    transregional, national
    Research projects
    German


     

    Help

    Search / advanced search of the idw archives
    Combination of search terms

    You can combine search terms with and, or and/or not, e.g. Philo not logy.

    Brackets

    You can use brackets to separate combinations from each other, e.g. (Philo not logy) or (Psycho and logy).

    Phrases

    Coherent groups of words will be located as complete phrases if you put them into quotation marks, e.g. “Federal Republic of Germany”.

    Selection criteria

    You can also use the advanced search without entering search terms. It will then follow the criteria you have selected (e.g. country or subject area).

    If you have not selected any criteria in a given category, the entire category will be searched (e.g. all subject areas or all countries).