idw - Informationsdienst
Wissenschaft
Zum ersten Mal ist es einem internationalen Forscherteam gelungen, die bislang unbekannte Struktur von magnetischen Skyrmion-Röhren in 3D nachzuweisen. Dieses Wissen ermöglicht es, die Bildung und Vernichtung von Skyrmionen besser zu verstehen und die magnetischen Strukturen in sogenannten spintronischen Speichergeräten einzusetzen.
Stuttgart – Noch nie zuvor war es Wissenschaftlern gelungen, sogenannte Skyrmionen – 100 Nanometer kleine Wirbelstrukturen, die in magnetischem Material vorkommen – dreidimensional sichtbar zu machen. Bislang schloss man aus dem 2D-Abbild auf die dritte Dimension und vermutete daher lange, dass diese kleinen Strukturen ausschließlich kugelförmig sind.
Ein internationales Forscherteam aus Deutschland, Großbritannien und Frankreich ließ Mutmaßungen hinter sich: Die Wissenschaftler wollten wissen, welche Form ein Skyrmion wirklich hat. „Was wir gefunden haben, ist kein kugelförmiges Skyrmion, wie man es bisher angenommen hatte. Tatsächlich haben wir eine Skyrmion-Röhre entdeckt. Das konnte vor uns noch nie jemand experimentell nachweisen“, erklärt Joachim Gräfe, Leiter der Forschungsgruppe Nanomagnonik und Magnetisierungsdynamik am Max-Planck-Institut für Intelligente Systeme in Stuttgart.
„Wir haben erstmals im Realraum Skyrmion-Röhren mit magnetischer Röntgenbildgebung beobachtet und konnten mit vergleichender mikromagnetischer Simulation ihre Struktur bestätigen.“ Gräfes Gruppe war Teil eines internationalen Forschungsprojekts, an dem auch Wissenschaftler der Durham University, den Universities of Southampton, Exeter, Warwick und Cambridge, des Helmholtz-Zentrums Berlin für Materialien und Energie sowie der Synchrotron-Strahlungsquellen BESSY II in Deutschland, SOLEIL in Frankreich und der Diamond Light Source in Großbritannien beteiligt waren. Am 7. April 2020 veröffentlichte das Team seine Ergebnisse in der Publikation „Real-space imaging of confined magnetic skyrmion tubes“ im renommierten Fachjournal Nature Communications.
Die Forscher verwendeten 120 Nanometer dünne Eisen-Germanium-Lamellen, in denen sie die 3D-Strukturen der Röhren sichtbar machten. Sie wählten Eisen-Germanium (FeGe), da dies ein Kristall ist, dessen Atome bereits spiralförmig angeordnet sind. „Diese natürliche Drehung im Kristall erleichtert die Bildung von Skyrmionen, die ebenfalls gedrehte Wirbel sind“, erklärt Gräfe.
Unter anderem half das hochpräzise Instrument MAXYMUS („MAgnetic X-raY Micro- and UHV Spectroscope“), das Verborgene sichtbar zu machen. MAXYMUS ist ein hochauflösendes Röntgenmikroskop, das am BESSY II, einer 80 Meter breiten Synchrotronstrahlungsquelle am Helmholtz-Zentrum Berlin, angesiedelt ist. Dank MAXYMUS konnten Gräfe und sein Team bereits mehrere bahnbrechende Entdeckungen machen. So wie diesmal: Das Röntgenmikroskop bildete die nur 70 Nanometer kleinen Röhren ab. Das entspricht einem Hundertstel des Durchmessers eines menschlichen Haares.
„Während Skyrmionen üblicherweise als zweidimensionale Objekte dargestellt werden, ist es in Wirklichkeit so, dass magnetische Skyrmionen längliche, röhrenartige Objekte sein können, die sich durch das sie umgebende Material ziehen. Die Untersuchung dieses röhrenförmigen Aufbaus – wir nennen das den „skyrmion tube state“ – ist von entscheidender Bedeutung, um die Skyrmion-Bildung und -Vernichtung besser zu verstehen und sie damit besser anwenden zu können“, sagt Gräfe.
Skyrmionen gelten als topologisch geschützt, d. h. sie sind in ihrer Form unveränderbar und stellen daher stabile Datenspeicher dar. „Jetzt da wir ihre Struktur kennen, wollten wir wissen: Wie lässt sich diese Stabilität überwinden?“, so Gräfe weiter. Das sei notwendig, um Skyrmionen, die Daten in spintronischen Geräten speichern, erzeugen und vernichten zu können.
Die Röhrenstruktur bietet hier den nötigen Ansatzpunkt: Wird die Röhre so weit verengt, dass sie nur noch einen Punkt dünn ist, bricht das Skyrmion auseinander. An diesem sogenannten Bloch-Punkt sind alle Richtungen gleichwertig, hier kann sich die Röhre auftrennen und auseinanderschnappen. Diese Erkenntnis öffnet die Tür für weitere Untersuchungen dieser bisher unerforschten Skyrmion-Spin-Textur.
„Das Projekt war eine echte interdisziplinäre Teamleistung. Wir hatten Experten aus verschiedensten Feldern – von der Kristallpräparation über die Modellbildung bis hin zur Röntgenmikroskopie“, so Max Birch von der Durham University, der als Erstautor federführend für die Publikation verantwortlich war. „Die Möglichkeit, unterschiedliche Röntgeninstrumente und -techniken zusammenführen, war entscheidend für den Erfolg unseres Projekts.“ Insgesamt waren 23 Autoren aus Deutschland, Frankreich und Großbritannien an der Forschungsarbeit beteiligt. „Dank der internationalen Kollaboration ist es uns gelungen, diese Röhren nachzuweisen – ein Meilenstein im Forschungsfeld Spintronik,“ schließt Gräfe.
Dr. Joachim Gräfe
Forschungsgruppenleiter
Moderne Magnetische Systeme
Heisenbergstraße 3
70569
+49 711 689-1852
graefe@is.mpg.de
https://www.nature.com/articles/s41467-020-15474-8
https://is.mpg.de/de/news/scientists-prove-the-existence-of-skyrmion-tubes
Modell der Skyrmion Röhren Struktur
MPI für Intelligente Systeme
None
Criteria of this press release:
Journalists, Scientists and scholars
Materials sciences, Physics / astronomy
transregional, national
Research projects, Research results
German
You can combine search terms with and, or and/or not, e.g. Philo not logy.
You can use brackets to separate combinations from each other, e.g. (Philo not logy) or (Psycho and logy).
Coherent groups of words will be located as complete phrases if you put them into quotation marks, e.g. “Federal Republic of Germany”.
You can also use the advanced search without entering search terms. It will then follow the criteria you have selected (e.g. country or subject area).
If you have not selected any criteria in a given category, the entire category will be searched (e.g. all subject areas or all countries).