idw – Informationsdienst Wissenschaft

Nachrichten, Termine, Experten

Grafik: idw-Logo
Grafik: idw-Logo

idw - Informationsdienst
Wissenschaft

Science Video Project
idw-Abo

idw-News App:

AppStore

Google Play Store



Instance:
Share on: 
05/12/2020 09:23

Was im Stahl für Ordnung sorgt

Meike Drießen Dezernat Hochschulkommunikation
Ruhr-Universität Bochum

    Kohlenstoffatome spielen für die Festigkeit von Stahl eine wichtige Rolle. Doch auch in Stählen, die schon seit Jahrzehnten im Einsatz sind, war das kollektive Verhalten dieser Atome bisher nicht vollständig verstanden. Eine gemeinsame Arbeit an der Ruhr-Universität Bochum (RUB) und dem Max-Planck-Institut für Eisenforschung (MPIE) hat Licht ins Dunkel gebracht: Das Wechselspiel zwischen den Kohlenstoffatomen, den durch sie verursachten Verzerrungen des Kristallgitters und den Gitterbaufehlern im Stahl ist für die energetischen Vorlieben der einzelnen Kohlenstoffatome entscheidend.

    Mit diesem Verständnis lässt sich die Herstellung von hochfesten Werkstoffen genauer steuern. Darüber berichtet die Zeitschrift Nature Materials am 4. Mai 2020.

    Wenn die Kohlenstoffkonzentration kippt

    Die wichtigsten Bestandteile von Stahl sind die Elemente Eisen und Kohlenstoff. Entscheidend für die Festigkeit dieses Materials ist aber nicht in erster Linie das Mischungsverhältnis, sondern die Verteilung der Kohlenstoffatome. Nehmen sie nach der Stahlherstellung eine bestimmte Ordnung ein, sprechen die Experten von Martensit. Die Details der Bildung dieser Struktur gaben der Forschung allerdings jahrzehntelang Rätsel auf: Bis zu einer bestimmten Konzentration von Kohlenstoff sammeln sich die Kohlenstoffatome aus energetischen Gründen an Grenzflächen und Defekten im Gitter der Eisenatome an. Steigt die Kohlenstoffkonzentration über einen bestimmten Wert, findet sich der Überschuss der Kohlenstoffatome nicht mehr an solchen Defekten, obwohl dort eigentlich noch genug Platz wäre. Vielmehr verteilen sich die C-Atome ab dieser Konzentration auf eine bestimmte, geordnete Weise im Kristallgitter. „Dabei ist der Abstand der Kohlenstoffatome im Gitter eigentlich viel zu groß, um eine solche Ordnung chemisch zu begründen“, so Dr. Jutta Rogal vom Interdisciplinary Centre for Advanced Materials Simulation Icams der RUB.

    Warum das so ist, hat das interdisziplinäre Team durch eine Kombination von theoretischen Berechnungen und Experimenten herausgefunden. Zwei Aspekte sind dafür von Bedeutung: Für das Kippen zwischen der Ansammlung von Kohlenstoffatomen an Defekten hin zu einem geordneten Aufsuchen bestimmter Plätze im Metallgitter sorgen stark anharmonische Verzerrungen der Gittermatrix in bestimmte kristallographische Richtungen. „Ist die Kohlenstoffkonzentration zu gering für starke Verzerrungen, ist es energetisch am wenigsten aufwändig, Grenzen oder Defekte zu besetzen“, erklärt Dr. Tilmann Hickel vom Max-Planck-Institut für Eisenforschung (MPIE). „Ab einer gewissen Konzentration stellt sich aber ein kollektiver Effekt der Atome ein, weil dieser Zustand mit einer Absenkung des chemischen Potenzials einhergeht – was den Gesetzen der Thermodynamik nach einer Energieminimierung entspricht.“

    Gesamtsystem und einzelne Teile

    Will man also die Prozesse der Werkstoffherstellung steuern, muss man diese Grundlagen in ihren komplexen Zusammenhängen kennen. „Wir müssen die Energie des gesamten Systems als Funktion von Druck und Temperatur im Auge haben, aber gleichzeitig auch die Energetik des einzelnen Teilchens in diesem System“, fasst Prof. Dr. Jörg Neugebauer vom MPIE zusammen. Nur so ist es dem Forschungsteam gelungen, die theoretischen Vorhersagen mit in Experimenten gemessenen Daten in Einklang zu bringen. Für die Messungen an verschiedenen Werkstoffen kamen die Atomprobentomografie und die Transmissionselektronenmikroskopie zum Einsatz.

    Förderung

    Die Arbeiten wurden gefördert von der Deutschen Forschungsgemeinschaft (DFG), Fördernummer HI 1300/15-1, im Rahmen des DFG-ANR-Projekts C-TRAM.

    Originalveröffentlichung

    Xie Zhang, Hongcai Wang, Tilmann Hickel, Jutta Rogal, Yujiao Li, Jörg Neugebauer: Mechanism of collective interstitial ordering in Fe–C alloys, in: Nature Materials, 2020, DOI: 10.1038/s41563-020-0677-9, https://www.nature.com/articles/s41563-020-0677-9

    Pressekontakt

    Dr. Jutta Rogal

    Interdisciplinary Centre for Advanced Materials Simulation

    Ruhr Universität Bochum

    Tel.: +49 234 32 29317

    E-Mail: jutta.rogal@rub.de


    Contact for scientific information:

    Dr. Jutta Rogal

    Interdisciplinary Centre for Advanced Materials Simulation

    Ruhr Universität Bochum

    Tel.: +49 234 32 29317

    E-Mail: jutta.rogal@rub.de


    Original publication:

    Xie Zhang, Hongcai Wang, Tilmann Hickel, Jutta Rogal, Yujiao Li, Jörg Neugebauer: Mechanism of collective interstitial ordering in Fe–C alloys, in: Nature Materials, 2020, DOI: 10.1038/s41563-020-0677-9, https://www.nature.com/articles/s41563-020-0677-9


    Images

    Criteria of this press release:
    Journalists
    Materials sciences
    transregional, national
    Research results
    German


     

    Help

    Search / advanced search of the idw archives
    Combination of search terms

    You can combine search terms with and, or and/or not, e.g. Philo not logy.

    Brackets

    You can use brackets to separate combinations from each other, e.g. (Philo not logy) or (Psycho and logy).

    Phrases

    Coherent groups of words will be located as complete phrases if you put them into quotation marks, e.g. “Federal Republic of Germany”.

    Selection criteria

    You can also use the advanced search without entering search terms. It will then follow the criteria you have selected (e.g. country or subject area).

    If you have not selected any criteria in a given category, the entire category will be searched (e.g. all subject areas or all countries).