idw – Informationsdienst Wissenschaft

Nachrichten, Termine, Experten

Grafik: idw-Logo
Grafik: idw-Logo

idw - Informationsdienst
Wissenschaft

Science Video Project
idw-Abo

idw-News App:

AppStore

Google Play Store



Instance:
Share on: 
07/07/2020 14:47

Put into the right light - Reproducible and sustainable coupling reactions

Katja Schulze Presse- und Öffentlichkeitsarbeit
Max-Planck-Institut für Kolloid- und Grenzflächenforschung

    Chemists at the Max Planck Institute of Colloids and Interfaces in Potsdam are developing improved methods for coupling reactions with light by targeted control of the catalyst activity.

    A team of researchers reports in the journal Nature Catalysis that sustainable carbon-nitrogen cross-couplings can be performed using simple nickel salts, carbon nitrides and light. The chemists study the use of cost-effective and reproducible semiconductors as photocatalysts in coupling reactions.

    Carbon-nitrogen cross-couplings are among the most important chemical reactions for the production of active pharmaceutical ingredients, crop protection agents and organic materials. In these reactions, two molecular building blocks are selectively linked together with the aid of a catalyst. Palladium compounds, which are considered excellent catalysts, are normally used for this purpose. However, due to the low abundance of this precious metal, these are expensive and not sustainable. Nickel is intensively studied as an alternative. However, this usually requires complex nickel complexes, strong bases or high temperatures.

    Activation of simple nickel compounds by light and photocatalysts

    These disadvantages can be avoided by activating simple nickel compounds with light and a photocatalyst. Suitable photocatalysts usually consist of rare and expensive precious metals such as iridium and ruthenium. In addition, the range of applications of these methods is limited and incomplete reactions as well as irreproducible results are observed.

    Precious metal-free methods for reproducible carbon-nitrogen cross-coupling

    In the course of their efforts to replace iridium and ruthenium photocatalysts with carbon nitrides, the chemists led by Bartholomäus Pieber discovered that the limitations and poor reproducibility are due to the destruction of the nickel catalyst, which can also lead to the deactivation of the photocatalyst. A careful analysis of these reactions enabled the scientists to prevent the destruction of the catalysts by selecting suitable light sources, changing the concentration or adding stabilizing additives. This has considerably expanded the range of applications for this reaction.

    Bartholomäus Pieber, leading scientist of the research group "Catalysis", emphasizes: "The developed, precious metal-free coupling protocols open the way to cost-effective, sustainable and above all reproducible carbon-nitrogen cross-couplings, which can also be carried out with sunlight as an energy source. We will next test our methodology for the production of active pharmaceutical ingredients".


    Contact for scientific information:

    Dr. Bartholomäus Pieber
    Bartholomaeus.Pieber@mpikg.mpg.de


    Original publication:

    Gisbertz, S., Reischauer, S. & Pieber, B.: Overcoming limitations in dual photoredox/nickel-catalysed C–N cross-couplings due to catalyst deactivation. Nat Catal (2020). https://doi.org/10.1038/s41929-020-0473-6


    Images

    Photochemical carbon-nitrogen cross-couplings can be dramatically improved by the choice of the light source
    Photochemical carbon-nitrogen cross-couplings can be dramatically improved by the choice of the ligh ...

    ©Bartholomäus Pieber


    Criteria of this press release:
    Business and commerce, Journalists, Scientists and scholars
    Chemistry, Materials sciences
    transregional, national
    Research results
    English


     

    Help

    Search / advanced search of the idw archives
    Combination of search terms

    You can combine search terms with and, or and/or not, e.g. Philo not logy.

    Brackets

    You can use brackets to separate combinations from each other, e.g. (Philo not logy) or (Psycho and logy).

    Phrases

    Coherent groups of words will be located as complete phrases if you put them into quotation marks, e.g. “Federal Republic of Germany”.

    Selection criteria

    You can also use the advanced search without entering search terms. It will then follow the criteria you have selected (e.g. country or subject area).

    If you have not selected any criteria in a given category, the entire category will be searched (e.g. all subject areas or all countries).