idw - Informationsdienst
Wissenschaft
Darmstadt, 18 August 2020. The conversion of carbon dioxide into hydrocarbons and other basic chemicals is important if we are to have a sustainable economy in the future. Researchers at the TU Darmstadt and the Helmholtz Institute Erlangen-Nürnberg for Renewable Energy have now decoded major steps in electrochemical carbon dioxide conversion and report on them in the renowned journal Angewandte Chemie International Edition.
The conversion of carbon dioxide into hydrocarbons and other basic chemicals plays an important role on the road to a sustainable economy. One promising process is the electrochemical conversion of gas isolated from the air or from industrial waste and secondary streams to copper catalysts. Solar or wind power can be used as the energy source. This also offers the possibility of storing excess renewable energy in the form of chemical energy. However, the electrocatalytic conversion of carbon dioxide is a complex process, and the individual steps have not yet been clarified. "A deeper insight into the reaction mechanisms is essential in order to steer the implementation of carbon dioxide towards the desired target products," emphasises Professor Bastian J. M. Etzold of the Department of Chemistry at TU Darmstadt.
Together with the group of Professor Jan P. Hoffmann (Department of Materials and Earth Sciences at TU Darmstadt) and researchers at the Helmholtz Institute Erlangen-Nürnberg for Renewable Energy, Etzold and his colleagues have now decoded essential steps in electrochemical carbon dioxide conversion. And they did so with a trick, as they now report in the renowned journal Angewandte Chemie International Edition: the scientists applied an ionic liquid to the copper catalyst that acted as a chemical trap. This allows intermediates of the electrochemical conversion to be intercepted and certain reaction steps to be prevented or slowed down. "We were able to use the resulting change in the product spectrum to simplify the complex response network and identify key steps," explained Professor Etzold. Among other things, the scientists were able to derive new findings on the conversion of carbon dioxide to the alcohols ethanol and propanol as well as to the hydrocarbons ethane and ethene.
The strategy is based on a concept called SCILL (solid catalyst with ionic liquid layer) that Etzold first published 13 years ago. To date, SCILL has been used e.g. to modify platinum catalysts for fuel cells. Applying the ionic liquid to the catalyst is easy, emphasises Etzold. "The method can be used in numerous laboratories and specialised test rigs, even under technically relevant conditions." Thanks to the variety of ionic liquids, the approach is also suitable for the study of other electrochemical reactions as well as for controlling the product range in electrocatalysis in general.
The original publication:
Probing CO2 Reduction Pathways in Copper Catalysts using Ionic Liquid as a Chemical Trapping Agent, G.-R. Zhang, S.-D. Straub, L.-L. Shen, Y. Hermans, P. Schmatz, A.M. Reichert, J.P. Hofmann, I. Katsounaros and B.J.M. Etzold, Angew. Chem. Int. Ed., DOI: 10.1002/anie.202009498
https://onlinelibrary.wiley.com/doi/10.1002/anie.202009498
About TU Darmstadt
The Technical University (TU) of Darmstadt is one of Germany’s leading technical universities. TU Darmstadt incorporates diverse science cultures to create its characteristic profile. The focus is set on engineering and natural sciences, which cooperate closely with outstanding humanities and social sciences. We are enjoying a worldwide reputation for excellent research in our highly-relevant, focused profile areas: cybersecurity, internet and digitalisation, nuclear physics, fluid dynamics and heat- and mass transfer, energy systems and new materials for product innovation. We dynamically develop our portfolio of research and teaching, innovation and transfer, in order to continue opening up important opportunities for the future of society. Our 312 professors, about 4,500 scientific and administrative employees and about 25,200 students devote their talents and best efforts to this goal. Together with Goethe University Frankfurt and Johannes Gutenberg University Mainz, TU Darmstadt has formed the strategic Rhine-Main Universities alliance.
www.tu-darmstadt.de
MI no. 48/2020 Uta Neubauer/sip
https://onlinelibrary.wiley.com/doi/10.1002/anie.202009498
Criteria of this press release:
Journalists, Scientists and scholars
Chemistry, Energy, Geosciences
transregional, national
Research results, Scientific Publications
English
You can combine search terms with and, or and/or not, e.g. Philo not logy.
You can use brackets to separate combinations from each other, e.g. (Philo not logy) or (Psycho and logy).
Coherent groups of words will be located as complete phrases if you put them into quotation marks, e.g. “Federal Republic of Germany”.
You can also use the advanced search without entering search terms. It will then follow the criteria you have selected (e.g. country or subject area).
If you have not selected any criteria in a given category, the entire category will be searched (e.g. all subject areas or all countries).