idw – Informationsdienst Wissenschaft

Nachrichten, Termine, Experten

Grafik: idw-Logo
Grafik: idw-Logo

idw - Informationsdienst
Wissenschaft

Science Video Project
idw-Abo

idw-News App:

AppStore

Google Play Store



Instance:
Share on: 
09/01/2020 12:21

Starting research project MIAME: Optical Coordinate Measuring System for Integration into the Production Line

Holger Kock, Head of Communications and Media, Fraunhofer IPM Kommunikation
Fraunhofer-Gesellschaft

    On July 28, Fraunhofer IPM and Fraunhofer IAF, together with the "Optical Systems" chair of the University of Freiburg, launched the MIAME project, in which they aim at developing the world's first optical coordinate measuring machine for the full-surface measurement of large objects on a meter scale. The system will be used to measure components in the production line quickly and with accuracies in the sub-micrometer range.

    Coordinate measuring machines are used to verify the dimensional accuracy of components with very high precision. This makes them an important tool in production measurement technology and thus in quality assurance, especially in innovative industries such as mechanical engineering, automotive or aerospace. State of the art are tactile coordinate measuring machines. These systems are equipped with a measuring head that probes the component surface at various points while being guided by a traversing and positioning system. The measured spatial coordinates provide information about important geometric parameters such as lengths, flatness or angles. Measurements with tactile coordinate measuring machines are typically very time-consuming. They are carried out in separate measuring rooms and are therefore only possible on a random basis.

    Capturing up to 500 billion 3D points per second

    The goal of the three-year MIAME research project is to develop an optical, non-contact coordinate measuring machine that can measure complex shaped components of sizes in the meter range with sub-micron precision. Measurements can be carried out in the production line over the entire surface of the object. A digital-holographic sensor with a novel laser light source based on whispering gallery resonators is at the core of the development. The light source should be able to be switched quickly and precisely between different wavelengths, which in combination with digital multi-wavelength holography for the first time enables interferometric measurements with up to one meter unambiguity. Integrated into a multi-axis handling system, the sensor system will be able to detect up to 500 million 3D points per second – with a single point accuracy of better than 0.1 µm and an unambiguity range of up to 1000 mm.


    Contact for scientific information:

    Dr. Alexander Bertz, alexander.bertz@ipm.fraunhofer.de


    More information:

    http://www.ipm.fraunhofer.de


    Images

    Criteria of this press release:
    Journalists, Scientists and scholars
    Materials sciences, Mechanical engineering, Physics / astronomy
    transregional, national
    Research projects, Transfer of Science or Research
    English


     

    Help

    Search / advanced search of the idw archives
    Combination of search terms

    You can combine search terms with and, or and/or not, e.g. Philo not logy.

    Brackets

    You can use brackets to separate combinations from each other, e.g. (Philo not logy) or (Psycho and logy).

    Phrases

    Coherent groups of words will be located as complete phrases if you put them into quotation marks, e.g. “Federal Republic of Germany”.

    Selection criteria

    You can also use the advanced search without entering search terms. It will then follow the criteria you have selected (e.g. country or subject area).

    If you have not selected any criteria in a given category, the entire category will be searched (e.g. all subject areas or all countries).