idw – Informationsdienst Wissenschaft

Nachrichten, Termine, Experten

Grafik: idw-Logo
Grafik: idw-Logo

idw - Informationsdienst
Wissenschaft

Science Video Project
idw-Abo

idw-News App:

AppStore

Google Play Store



Instance:
Share on: 
09/08/2020 11:48

Paving the way for environmentally friendly electrochemistry

Petra Giegerich Kommunikation und Presse
Johannes Gutenberg-Universität Mainz

    Carl Zeiss Foundation grants some EUR 2 million in funding to the ECHELON project at Johannes Gutenberg University Mainz

    The conversion to high-grade chemicals for the paper or pharmaceutical industry from biomass, such as straw or leaves, is a good idea – at least in theory. But there is a catch: To do this, the oxygen atoms must first be removed from the organic compounds and to date this has only been possible at high pressures and strongly elevated temperatures – resulting in a poor energy efficiency. In addition, expensive, dangerous, and often environmentally harmful catalysts are needed. However, it is a completely different story if the oxygen atoms are separated using electricity, i.e., by means of electrolysis. The use of catalytic converters is then unnecessary and, thanks to the presence of wind and solar power plants, there even may be surplus green energy available. To ensure electrolysis remains environment-friendly, a medium such as water or a simple alcohol must be employed. At the same time, there is yet another problem: Instead of taking out the oxygen atoms from the organic compounds, a different reaction often occurs – hydrogen gas evolves instead of the desired chemicals.

    Quantum chemistry meets multiscale modeling

    Through the new ECHELON project (Disruptive Electrode-electrolyte Concepts beyond Current Scientific Limitations) researchers at Johannes Gutenberg University Mainz (JGU) want to change this. The project will involve experts from the two top-level research areas SusInnoScience and M3ODEL working hand in hand. The recently approved ECHELON project, which is being given some EUR 2 million in funding by the Carl Zeiss Foundation, will start on January 1, 2021 and will run for five years. Professor Siegfried Waldvogel, lead scientist of the ECHELON project and spokesperson of SusInnoScience, described the underlying concept: "What we do is attract cations to the surface of the cathode. This will then be positively charged, so the hydrogen ions, which are also positively charged, cannot accumulate on it." Pilot trials have demonstrated that this concept generally works. Now the researchers are striving to understand the theory behind it so that they will be able to take a targeted approach to optimizing the process. As simple as this may sound at first, it is in fact extremely complex. "We need to combine the two major fields of quantum chemistry and multiscale modeling. Quantum chemistry allows us to calculate the chemical reactions at the cathode, while multiscale modeling enables us to theoretically map the movement and concentration of the ions in the fluid surrounding the cathode," explained Waldvogel.

    According to Waldvogel, the creation of such a theoretical model for electrochemistry is unique worldwide – and has the potential to lead to significant advances in electrochemistry in general and in connection with the corresponding research in Mainz. "The results of this project will help us open doors that until now were thought to be permanently closed and pave the way for numerous new applications," concluded Waldvogel. One example relates to the processing of waste flows: In future it may be possible to use electrochemistry to recycle residues resulting from the production of plastics such as Nylon and Perlon.

    About the Carl Zeiss Foundation

    The Carl Zeiss Foundation's mission is to create an open environment for scientific breakthroughs. As a partner of excellence in science, it supports basic research as well as applied sciences in the STEM subject areas (science, technology, engineering and mathematics). Founded in 1889 by the physicist and mathematician Ernst Abbe, the Carl Zeiss Foundation is one of the oldest and biggest private science funding institutions in Germany. It is the sole owner of Carl Zeiss AG and SCHOTT AG. Its projects are financed from the dividend distributions of the two foundation companies.

    Image:
    https://download.uni-mainz.de/presse/personal_09_waldvogel.jpg
    Professor Siegfried Waldvogel, lead scientists of the ECHELON project
    photo/©: Eric Lichtenscheidt

    Related links:
    https://susinnoscience.uni-mainz.de/ – Sustainable Chemistry as the Key to Innovation in Resource-efficient Science in the Anthropocene (SusInnoScience) at JGU
    https://model.uni-mainz.de/ – Mainz Institute of Multiscale Modeling (M3ODEL) at JGU
    https://www.carl-zeiss-stiftung.de/english/index.html – Carl Zeiss Foundation


    Contact for scientific information:

    Professor Dr. Siegfried R. Waldvogel
    Department of Chemistry
    Johannes Gutenberg University Mainz
    55099 Mainz, GERMANY
    phone: +49 6131 39-26069
    e-mail: waldvogel@uni-mainz.de
    https://www.aksw.uni-mainz.de/


    More information:

    https://www.uni-mainz.de/presse/aktuell/11412_ENG_HTML.php – press release "Researchers at Mainz University develop a sustainable method for extracting vanillin from wood processing waste" (3 June 2020)
    https://www.uni-mainz.de/presse/aktuell/10271_ENG_HTML.php – press release "Siegfried Waldvogel receives Manuel M. Baizer Award" (11 Nov. 2019)


    Images

    Criteria of this press release:
    Business and commerce, Journalists, Scientists and scholars, Students
    Chemistry, Energy, Environment / ecology
    transregional, national
    Research projects
    English


     

    Help

    Search / advanced search of the idw archives
    Combination of search terms

    You can combine search terms with and, or and/or not, e.g. Philo not logy.

    Brackets

    You can use brackets to separate combinations from each other, e.g. (Philo not logy) or (Psycho and logy).

    Phrases

    Coherent groups of words will be located as complete phrases if you put them into quotation marks, e.g. “Federal Republic of Germany”.

    Selection criteria

    You can also use the advanced search without entering search terms. It will then follow the criteria you have selected (e.g. country or subject area).

    If you have not selected any criteria in a given category, the entire category will be searched (e.g. all subject areas or all countries).