idw – Informationsdienst Wissenschaft

Nachrichten, Termine, Experten

Grafik: idw-Logo
Grafik: idw-Logo

idw - Informationsdienst
Wissenschaft

Science Video Project
idw-Abo

idw-News App:

AppStore

Google Play Store



Instance:
Share on: 
10/16/2020 13:31

Chemische Evolution - Am Anfang war der Zucker

LMU Stabsstelle Kommunikation und Presse
Ludwig-Maximilians-Universität München

    Der Ursprung allen Lebens liegt in organischen Molekülen. Doch wie sind diese aus anorganischen Stoffen entstanden? Der LMU-Chemiker Oliver Trapp berichtet über einen Reaktionsweg, bei dem sich Zucker an Mineralien ohne Wasser bilden.

    Eine Reise zurück in die Vergangenheit: Vor mehr als vier Milliarden Jahren war die Erde alles andere als ein blauer Planet. Sie begann, sich langsam abzukühlen, und die Schale aus verschiedenen mineralischen Schichten bildete sich. Starker Vulkanismus prägte das Bild. Und die Atmosphäre bestand aus Kohlendioxid, Stickstoff, Methan, Ammoniak, Schwefelwasserstoff sowie gasförmigem Wasser. In dieser feindlichen Umgebung nahm alles Leben seinen Anfang, nur welche Schritte waren erforderlich?

    Mit dieser Frage befassen sich Forschende seit Jahrzehnten. Bereits 1953 gelang Stanley Miller und Harold C. Urey, wie US-amerikanischen Chemikern, ein Durchbruch. Im Experiment simulierten sie die Uratmosphäre der Erde inklusive Funkenentladung als Modell für Gewitter. Tatsächlich fanden sie in ihrem Reaktionsansatz neben anderen Stoffen auch Aminosäuren, die Eiweiße aufbauen. Heute weiß man, dass die Reaktionsbedingungen nicht der ursprünglichen Situation entsprachen. Ein Durchbruch war das Miller-Urey-Experiment aber dennoch.

    Wie andere wichtige Moleküle, etwa Zucker, Fette oder Nukleinsäuren, entstanden sein könnten, blieb weiterhin offen. Ohne diesen komplexen Baukasten ist eine Evolution, die primär zu Cyanobakterien geführt hat, undenkbar. Mit dieser zentralen Frage befasst sich Oliver Trapp, Professor für Organische Chemie an der LMU.

    Zucker aus Formaldehyd

    Die Spurensuche beginnt im Jahr 1861. Alexander Butlerow, ein russischer Chemiker, fand heraus, dass aus Formaldehyd bei der sogenannten Formosereaktion unterschiedliche Zucker entstehen. Ameisensäure haben Miller und Urey bei ihren Experimenten nachgewiesen. Bei deren Reduktion entsteht Formaldehyd. Butlerow wiederum fand heraus, dass verschiedene Mineralien die Formosereaktion katalysieren. Dazu gehörten unter anderem Oxide und Hydroxide von Calcium, Barium, Thallium und Blei. Gerade Calcium ist in den oberen Erdschichten reichlich vorhanden.

    Doch die Hypothese, dass Zucker über diesen Weg entstanden sein könnten, hat zwei Schönheitsfehler. Bei der Formosereaktion entsteht ein Gemisch an unterschiedlichen Verbindungen. Außerdem läuft dieser Weg nur in wässrigen Systemen ab. Zucker lassen sich jedoch auf Meteoriten ebenfalls nachweisen.

    Trapp untersuchte zusammen mit Kolleginnen und Kollegen der LMU und des Max-Planck-Instituts für Astronomie in Heidelberg eine andere Möglichkeit. Ihre Experimente führten die Forscher unter mechanochemischen Bedingungen durch. Das heißt: Alle Reagenzien und Mineralien kamen in eine Kugelmühle. Ziel der Arbeitsgruppe war, mechanische Kräfte, wie sie in der Erdgeschichte aufgetreten sind, zu simulieren. Das geschah ohne den Zusatz von Lösungsmitteln.

    Tatsächlich lief unter den Reaktionsbedingungen die Formosereaktion ab. Zahlreiche Mineralien eigneten sich, um den Vorgang zu katalysieren. Sie adsorbierten Formaldehyd. Daraus entstand zusammen mit Glykolaldehyd der Zucker Ribose. Er kommt unter anderem in Ribonukleinsäuren vor, die Erbinformationen von Lebewesen speichern. Aber auch höhere Zucker entstanden im Experiment. Gleichzeitig bildeten sich nur wenige Nebenprodukte wie Milchsäure oder Methanol.

    „Unsere Ergebnisse liefern eine plausible Erklärung für die Bildung von Zuckern in der festen Phase, aber auch in einer extraterrestrischen Umgebung, in der kein Wasser zur Verfügung steht“, sagt Trapp. Daraus ergeben sich neue Puzzleteile, die sich langsam in ein umfassendes Bild einfügen und wichtige Wege zur Entstehung von Leben aufzeigen. „Wir sind aber auch überzeugt, dass die gewonnenen Erkenntnisse völlig neue Perspektiven für die Forschung eröffnen werden“, ergänzt der LMU-Chemiker.


    Contact for scientific information:

    Prof. Dr. Oliver Trapp
    LMU, Department Chemie
    +49 (0)89 2180-77461
    Oliver.trapp@cup.uni-muenchen.de


    Original publication:

    Maren Haas, Saskia Lamour, Sarah Babette Christ & Oliver Trapp
    Mineral-mediated carbohydrate synthesis by mechanical forces in a primordial geochemical setting
    Communication Chemistry – Nature, 2020
    https://www.nature.com/articles/s42004-020-00387-w


    Images

    Criteria of this press release:
    Journalists
    Biology, Chemistry
    transregional, national
    Research results
    German


     

    Help

    Search / advanced search of the idw archives
    Combination of search terms

    You can combine search terms with and, or and/or not, e.g. Philo not logy.

    Brackets

    You can use brackets to separate combinations from each other, e.g. (Philo not logy) or (Psycho and logy).

    Phrases

    Coherent groups of words will be located as complete phrases if you put them into quotation marks, e.g. “Federal Republic of Germany”.

    Selection criteria

    You can also use the advanced search without entering search terms. It will then follow the criteria you have selected (e.g. country or subject area).

    If you have not selected any criteria in a given category, the entire category will be searched (e.g. all subject areas or all countries).