idw - Informationsdienst
Wissenschaft
Forschenden der Universitäten Jena und Cambridge ist es gelungen, eine neue Klasse hybrider Glaswerkstoffe herzustellen, die organische und anorganische Komponenten vereint und den Werkstoffen ganz besondere mechanische Eigenschaften verleiht. Die Wissenschaftlerinnen und Wissenschaftler nutzen dafür Materialkombinationen, in denen metallorganische und anorganische Gläser chemisch verbunden sind. Seine Arbeit stellt das Forschungsteam in der aktuellen Ausgabe des renommierten Fachmagazins „Nature Communications“ vor.
Verbundstoffe aus organischen und anorganischen Materialien sind in der Natur häufig zu finden. Beispielsweise bestehen Knochen aus dem organischen Strukturprotein Kollagen und dem anorganischen Mineral Apatit. Diese Kombination macht Knochen biegsam und fest zugleich, was durch nur einen Materialtyp allein nicht möglich wäre. Bei der Herstellung von Hybridmaterialien mit besonderen Eigenschaften ist die Natur der technologischen Materialentwicklung aber noch weit überlegen; ähnlich funktionale Hybridmaterialien künstlich herzustellen, ist noch immer eine große Herausforderung.
Forschenden der Universitäten Jena und Cambridge ist es nun jedoch gelungen, eine neue Klasse hybrider Glaswerkstoffe herzustellen, die ebenfalls organische und anorganische Komponenten vereint und den Werkstoffen ganz besondere mechanische Eigenschaften verleiht. Die Wissenschaftlerinnen und Wissenschaftler nutzen dafür Materialkombinationen, in denen metallorganische und anorganische Gläser chemisch verbunden sind. Seine Arbeit stellt das Forschungsteam in der aktuellen Ausgabe des renommierten Fachmagazins „Nature Communications“ vor.
Metallorganisches Netz als Grundgerüst des neuen Materials
Werkstoffe aus metallorganischen Netzwerken – sogenannte MOF-Materialien – erfahren seit einigen Jahren ein stark steigendes Forschungsinteresse. Sie können beispielsweise als Trennmembranen oder Speicher für Gase und Flüssigkeiten, als Träger für Katalysatoren oder für elektrische Energiespeicher eingesetzt werden. Der Vorteil der MOF-Materialien liegt darin, dass ihre Gitterstruktur bis in den Größenbereich einiger Nanometer hinein genau eingestellt werden kann. Dadurch kann zum Beispiel eine Porosität erreicht werden, die sowohl bezüglich der Größe der Poren und ihrer Durchströmbarkeit als auch hinsichtlich der an den Porenoberflächen vorherrschenden chemischen Eigenschaften an eine Vielzahl von Anwendungen angepasst werden kann.
„Das chemische Design von MOF-Materialien folgt einem Baukastenprinzip, nach dem anorganische Teilchen über organische Moleküle miteinander zu einem dreidimensionalen Netzwerk verbunden werden“, erläutert Louis Longley von der Universität Cambridge. Daraus ergibt sich eine große Vielfalt möglicher Strukturen, so der britische Forscher. Einige dieser Strukturen könnten durch Temperaturbehandlung in einen glasigen Zustand überführt werden. „Während klassische MOF-Materialien typischerweise in Pulverform vorliegen, ermöglicht der Glaszustand vielfältige Verarbeitungsformen des Materials.“
Chemische Verbindung mit anorganischem Glas bringt neue Eigenschaften hervor
„Indem wir MOF-abgeleitete Gläser mit klassischen, anorganischen Glaswerkstoffen kombinieren, können wir das Beste beider Welten miteinander verbinden“, sagt Courtney Calahoo vom Lehrstuhl für Glaschemie der Friedrich-Schiller-Universität Jena. Sie führt aus, dass solche Kompositgläser deutlich verbesserte mechanische Eigenschaften aufweisen können als bisherige Gläser, da sie es möglich machen, die Schlagfestigkeit und Bruchzähigkeit von Kunststoffen mit der hohen Härte und Steifigkeit anorganischer Gläser zu verbinden. Entscheidend dafür, dass die beteiligten Materialien nicht einfach nur miteinander gemischt werden, ist die Entstehung eines Kontaktbereichs, innerhalb dessen sich chemische Bindungen zwischen dem metallorganischen Netzwerk und dem herkömmlichen Glas ausbilden können. „Nur auf diese Weise können wirklich neue Eigenschaften erhalten werden, zum Beispiel in der elektrischen Leitfähigkeit oder der mechanischen Widerstandsfähigkeit“, erläutert der Glaschemiker Prof. Dr.-Ing. Lothar Wondraczek von der Universität Jena.
Prof. Dr.-Ing. Lothar Wondraczek
Otto-Schott-Institut für Materialforschung der Universität Jena
Fraunhoferstr. 6, 07743 Jena
Tel.: 03641 / 948500
E-Mail: lothar.wondraczek[at]uni-jena.de
L. Longley, C. Calahoo, R. Limbach, Y. Xia, J. M. Tuffnell, A. F. Sapnik, M. F. Thorne, D. S. Keeble, D. A. Keen, L. Wondraczek, T. D. Bennett: Metal-organic framework and inorganic glass composites. Nature Communications 11 (2020), DOI: 10.1038/s41467-020-19598-9
Dr. Courtney Calahoo von der Universität Jena präsentiert organisches Glas (l.) und anorganisches Gl ...
Foto: Jens Meyer/Uni Jena
Criteria of this press release:
Journalists, Scientists and scholars
Chemistry, Materials sciences
transregional, national
Research results, Scientific Publications
German
You can combine search terms with and, or and/or not, e.g. Philo not logy.
You can use brackets to separate combinations from each other, e.g. (Philo not logy) or (Psycho and logy).
Coherent groups of words will be located as complete phrases if you put them into quotation marks, e.g. “Federal Republic of Germany”.
You can also use the advanced search without entering search terms. It will then follow the criteria you have selected (e.g. country or subject area).
If you have not selected any criteria in a given category, the entire category will be searched (e.g. all subject areas or all countries).