idw – Informationsdienst Wissenschaft

Nachrichten, Termine, Experten

Grafik: idw-Logo
Grafik: idw-Logo

idw - Informationsdienst
Wissenschaft

Science Video Project
idw-Abo

idw-News App:

AppStore

Google Play Store



Instance:
Share on: 
12/07/2020 13:46

What the nose knows - frühe Synthese der Duftwahrnehmung

Christina Glaser Präsidialabteilung, Bereich Kommunikation & Marketing
Universität Regensburg

    Wissenschaftler:innen haben erstmals experimentell mittels hochauflösender optischer Methoden nachgewiesen, dass die Freisetzung von Botenstoff aus reziproken Spines mittels eines auf den Spine beschränkten Aktionspotentials erfolgt.

    Auch in einem Jahr ohne Weihnachtsmärkte verbinden wir die Adventszeit mit Düften wie etwa Zimt oder Kerzenrauch. Während das Zustandekommen von Seh- oder auch Höreindrücken weitgehend aufgeklärt ist, hat man bislang nur teilweise verstanden, wie und auf welcher Ebene des Gehirns solche Duftsignale abgebildet werden und wie aus dieser Abbildung Dufteindrücke entstehen. Die erste Verarbeitungsebene jenseits der Nase ist dabei der sogenannte Bulbus olfactorius oder Riechkolben, dessen Neurone von den Riechsinneszellen innerviert werden.

    Die meisten Neurone des Säugergehirns tragen auf ihren Dendriten, den Zellfortsätzen, kleine Ausstülpungen (Dornfortsätze oder „Spines“ genannt), auf denen die synaptischen Kontakte zu den vorgeschalteten Neuronen hauptsächlich lokalisiert sind. Die Körnerzellen des Bulbus olfactorius – eine Art lokales Neuron und der häufigste Nervenzelltyp in diesem Hirnareal – verfügen über Spines, die nicht nur erregende Eingangssignale erhalten, sondern auch selbst Botenstoffe freisetzen können – sogenannte reziproke Synapsen.

    Ein Team aus Wissenschaftler:innen um Veronica Egger, Professur für Neurophysiologie an der Universität Regensburg, hat nun erstmals experimentell mittels hochauflösender optischer Methoden nachgewiesen, dass die Freisetzung von Botenstoff aus diesen reziproken Spines mittels eines auf den Spine beschränkten Aktionspotentials erfolgt. Überraschenderweise ist für die Auslösung der Freisetzung aber die gleichzeitige Aktivierung sogenannter NMDA-Rezeptoren erforderlich, die sonst für die Erzeugung von Eingangssignalen relevant sind. In Kollaboration mit Kolleginnen und Kollegen aus Teheran und Turin konnte ein möglicher Mechanismus für solch eine neuartige Kooperation beschrieben werden. Die Ergebnisse der Arbeit sind jetzt in der Fachzeitschrift eLife erschienen.

    Jenseits dieser ungewöhnlichen subzellulären Vorgänge hat der Befund auch eine weitergehende Bedeutung für die Kodierung von Duftreizen. Diese erfolgt kombinatorisch, da jedes Duftmolekül üblicherweise eine große Anzahl von Duftrezeptoren aktiviert. Alle Rezeptoren desselben Typs regen nun ein nachgeschaltetes Modul von Neuronen des Bulbus olfactorius an, das seinerseits in die olfaktorische Hirnrinde verschaltet ist. Aus dieser Aktivierung mehrerer Module wird eine Duftwahrnehmung synthetisiert (genauso wie ein musikalischer Akkord mehrere Gruppen frequenzselektiver Neurone der Hörbahn aktiviert und daraus schließlich eine Wahrnehmung des Gesamtklangs entsteht). Die Rezeptormodule wechselwirken im Bulbus nicht direkt, sondern stehen unter anderem über Körnerzellen miteinander in Verbindung. Die beobachtete Kooperation legt nun nahe, dass die Synthese der Duftwahrnehmung bereits auf der Ebene des Bulbus olfactorius in einer sehr effizienten Weise beginnt, indem die Körnerzellen ausschließlich gleichzeitig aktive Module miteinander verschalten und die Aktivität dieser Module synchronisieren.

    Das Projekt wurde maßgeblich vom Bundesministerium für Bildung und Forschung gefördert (Förderkennzeichen 01GQ1104 und 01GQ1410A).


    Contact for scientific information:

    Prof. Dr. Veronica Egger
    Professur für Neurophysiologie
    Universität Regensburg
    Telefon +49 (0)941 943-3118
    E-Mail veronica.egger@ur.de


    Original publication:

    Lage-Rupprecht, V., Zhou, L., Bianchini, G., Aghvami, S. S., Mueller, M., Rózsa, B., Sassoè-Pognetto, Egger, V. (2020). Presynaptic NMDARs cooperate with local spikes toward GABA release from the reciprocal olfactory bulb granule cell spine. eLife 2020;9:e63737. DOI:10.7554/eLife.63737


    More information:

    https://www.uni-regensburg.de/biologie-vorklinische-medizin/neurophysiologie/ind... Professur für Neurophysiologie an der Universität Regensburg


    Images

    Signal, Simulation, Ultrastruktur: Funktionsweise des reziproken Körnerzellspines.
    Signal, Simulation, Ultrastruktur: Funktionsweise des reziproken Körnerzellspines.

    Veronica Egger


    Criteria of this press release:
    Journalists
    Biology
    transregional, national
    Research results, Scientific Publications
    German


     

    Help

    Search / advanced search of the idw archives
    Combination of search terms

    You can combine search terms with and, or and/or not, e.g. Philo not logy.

    Brackets

    You can use brackets to separate combinations from each other, e.g. (Philo not logy) or (Psycho and logy).

    Phrases

    Coherent groups of words will be located as complete phrases if you put them into quotation marks, e.g. “Federal Republic of Germany”.

    Selection criteria

    You can also use the advanced search without entering search terms. It will then follow the criteria you have selected (e.g. country or subject area).

    If you have not selected any criteria in a given category, the entire category will be searched (e.g. all subject areas or all countries).