idw – Informationsdienst Wissenschaft

Nachrichten, Termine, Experten

Grafik: idw-Logo
Grafik: idw-Logo

idw - Informationsdienst
Wissenschaft

Science Video Project
idw-Abo

idw-News App:

AppStore

Google Play Store



Instance:
Share on: 
12/11/2020 15:25

Two, Six, Many

Marietta Fuhrmann-Koch Kommunikation und Marketing
Universität Heidelberg

    Phase transitions describe dramatic changes in properties of a macroscopic system – like the transition from a liquid to a gas. Starting from individual ultracold atoms, Heidelberg University physicists were able to observe the emergence of such a transition with an increasing number of particles. The research work was carried out in the field of quantum physics under the direction of Prof. Dr. Selim Jochim from the Institute for Physics.

    Two, Six, Many
    Heidelberg physicists observe the emergence of collective behaviour

    Phase transitions describe dramatic changes in properties of a macroscopic system – like the transition from a liquid to a gas. Starting from individual ultracold atoms, Heidelberg University physicists were able to observe the emergence of such a transition with an increasing number of particles. The research work was carried out in the field of quantum physics under the direction of Prof. Dr Selim Jochim from the Institute for Physics.

    In order to formulate effective theories in physics, microscopic details are set aside in favour of macroscopically observable quantities. A cup of water can be described by properties like pressure, temperature and density of the fluid, whereas the position and velocity of the individual water molecules are irrelevant. A phase transition describes the change of a macroscopic system from one state of matter, like fluid, to a different state of matter, like gaseous. The properties of macroscopic systems – so-called many-body systems – can be described as emergent because they result from the interaction of individual components which themselves do not possess these properties.

    “I have long been interested in how this dramatic macroscopic change at a phase transition emerges from the microscopic description,” states Selim Jochim. To answer this question, the researchers designed an experiment in which they assembled a system from individual ultracold atoms. Using this quantum simulator, they investigated how collective behaviour arises in a microscopic system. To this end, they trapped up to twelve atoms in a tightly focused laser beam. In this artificial system it is possible to continuously tune the interaction strength between the atoms from non-interacting to being the largest energy scale in the system. “On the one hand, the number of particles in the system is small enough to describe the system microscopically. On the other hand, collective effects are already evident,” explains Luca Bayha, a postdoc in Prof. Jochim’s team.

    In their experiment, the Heidelberg physicists configured the quantum simulator such that the atoms attract one another, and if the attraction is strong enough, form pairs. These pairs of atoms are the necessary ingredient for a phase transition to a superfluid – a state in which the particles flow without friction. The current experiments focused on when the pair formation emerges as a function of the interaction strength and the particle number. “The surprising result of our experiment is that only six atoms show all the signatures of a phase transition expected for a many-particle system,” adds Marvin Holten, a doctoral student in Prof. Jochim’s group.

    In their work, the researchers have benefitted from the framework of the Cluster of Excellence “STRUCTURES – A Unifying Approach to Emergent Phenomena in the Physical World, Mathematics, and Complex Data” and the Collaborative Research Centre “Isolated Quantum Systems and Universality in Extreme Conditions (ISOQUANT)” of Heidelberg University. Crucial to the success of the experiments was a collaboration with researchers from the universities in Lund (Sweden) and Aarhus (Denmark). The research results were published in “Nature”.

    Contact:
    Communications and Marketing
    Press Office
    Phone +49 6221 54-2311
    presse@rektorat.uni-heidelberg.de


    Contact for scientific information:

    Prof. Dr Selim Jochim
    Institute for Physics
    Phone +49 6221 54-19472
    jochim@uni-heidelberg.de


    Original publication:

    L. Bayha, M. Holten, R. Klemt, K. Subramanian, J. Bjerlin, S. M. Reimann, G. M. Bruun, P. M. Preiss, S. Jochim: Observing the emergence of a quantum phase transition shell by shell. Nature 587, 583–587 (2020), https://doi.org/10.1038/s41586-020-2936-y


    More information:

    http://www.lithium6.de


    Images

    Artist impression: Six pairs of atoms in the focus of a laser beam.
    Artist impression: Six pairs of atoms in the focus of a laser beam.

    Jonas Ahlstedt / Lund University Bioimaging Centre (LBIC)


    Criteria of this press release:
    Journalists
    Physics / astronomy
    transregional, national
    Research results, Scientific Publications
    English


     

    Help

    Search / advanced search of the idw archives
    Combination of search terms

    You can combine search terms with and, or and/or not, e.g. Philo not logy.

    Brackets

    You can use brackets to separate combinations from each other, e.g. (Philo not logy) or (Psycho and logy).

    Phrases

    Coherent groups of words will be located as complete phrases if you put them into quotation marks, e.g. “Federal Republic of Germany”.

    Selection criteria

    You can also use the advanced search without entering search terms. It will then follow the criteria you have selected (e.g. country or subject area).

    If you have not selected any criteria in a given category, the entire category will be searched (e.g. all subject areas or all countries).