idw – Informationsdienst Wissenschaft

Nachrichten, Termine, Experten

Grafik: idw-Logo
Grafik: idw-Logo

idw - Informationsdienst
Wissenschaft

Science Video Project
idw-Abo

idw-News App:

AppStore

Google Play Store



Instance:
Share on: 
12/18/2020 11:04

Künstliche Intelligenz soll zukünftig OP-Risiken mindern

Julia Bird Unternehmenskommunikation
Universitätsklinikum Heidelberg

    Wissenschaftler des Universitätsklinikum Heidelberg entwickeln „Kognitiven medizinischen Assistenten“ / Algorithmus soll individuelles Operationsrisiko des Patienten im Vorfeld erkennen, Therapieentscheidungen erleichtern und Komplikationen vorbeugen / Innovatives Projekt wird vom Ministerium für Wissenschaft, Forschung und Kunst Baden-Württemberg mit 2 Millionen Euro gefördert

    Um das individuelle Risiko eines Patienten für Komplikationen schon vor der Operation möglichst genau abschätzen und berücksichtigen zu können, wollen Wissenschaftler des Universitätsklinikums Heidelberg Methoden des „Maschinellen Lernens“ nutzen. Im Rahmen des Projekts „Kognitiver medizinischer Assistent (KoMed)“ wird ein interdisziplinäres Team der Kliniken für Anästhesiologie sowie für Allgemein-, Viszeral- und Transplantationschirurgie in den kommenden zwei Jahren einen Algorithmus darin trainieren, eine Vielzahl klinischer Daten von Patienten mittels Big-Data-Analysen auszuwerten. Ziel ist es, in den Daten Muster zu erkennen und Zusammenhänge zu identifizieren, die zur Erstellung individueller Risikoprofile genutzt werden können. Der gemeinsam mit industriellen Partnern entwickelte KoMed soll zukünftig eine fundierte Entscheidungshilfe bieten, um Komplikationen durch eine angepasste Behandlung und Versorgung zu vermeiden. Das innovative Projekt wird vom Ministerium für Wissenschaft, Forschung und Kunst Baden-Württemberg mit 2 Millionen Euro gefördert.

    Kooperationspartner sind das Institut für Medizinische Biometrie und Informatik (IMBI), die Abteilung Medizinische Informationssysteme sowie das Zentrum für Informations- und Medizintechnik (ZIM) am Universitätsklinikum Heidelberg. Industrielle Partner sind Mint Medical, phellow seven, Philips und KARL STORZ.

    Bisherige Risikoscores richten sich z.B. nach Alter, Geschlecht und Vorerkrankungen. Sie bilden das tatsächliche Komplikationsrisiko des jeweiligen Patienten nur unzureichend ab. Der KoMed wird eine Vielzahl verfügbarer Patientendaten analysieren und erkennen, welche Merkmale mit einem erhöhten bzw. geringen Risiko für Komplikationen wie zum Beispiel Wundinfekte oder Herzinfarkte einhergehen. „Das gibt nicht nur Patienten und Behandlungsteams mehr Sicherheit bei der Therapieentscheidung“, erläutert Projektleiter Dr. Jan Larmann, Oberarzt der Anästhesiologischen Universitätsklinik. „Die möglichst exakte Einschätzung des Risikos erlaubt außerdem einen gezielten Einsatz von Ressourcen und bringt damit auch einen ökonomischen Nutzen.“

    „Das Komplikationsrisiko lässt sich durch Weiterentwicklung der chirurgischen Techniken und Narkoseverfahren nur zu einem gewissen Grad senken. Wir benötigen dringend mehr Informationen darüber, welche Merkmale der Patienten mit erhöhtem oder reduziertem Komplikationsrisiko einhergehen, um Patienten in Zukunft individualisiert behandeln zu können“, sagt Professor Dr. Pascal Probst, Oberarzt an der Chirurgischen Universitätsklinik und ärztlicher Leiter des Studienzentrums der Deutschen Gesellschaft für Chirurgie (SDGC). Im Rahmen einer ersten klinischen Beobachtungsstudie werden Routinedaten und Behandlungsverläufe von zunächst 600 chirurgischen Patienten erfasst. Diese Daten werden in strukturierter und analysierbarer Form aufbereitet und liefern die Grundlage, anhand derer KoMed mögliche Risiken zu erkennen lernt. Zwar werden Daten zu Grund- und Begleiterkrankungen, aus der Bildgebung, über Art und Verlauf der Operation, Medikation und Blutwerte sowie eine Vielzahl weiterer Messwerte aus der klinischen Routine bereits jetzt digital erfasst, aber nur ein Bruchteil davon wird zur Risikoprognose genutzt – die zur Verarbeitung verwendeten Systeme lassen keine Analyse zu.

    Zusätzlich werden sogenannte Proteomanalysen bei den Patienten der Studie durchgeführt: Diese geben einen Überblick über alle aktuell im Körper aktiven Proteine und damit einen Einblick in Stoffwechselvorgänge, deren Veränderung oder Störung. „Aus der Kombination der Proteomdaten und der klinischen Routinedaten erhoffen wir uns ein besseres Verständnis davon, unter welchen Begleitumständen es zu Komplikationen kommt und welche Krankheitsmechanismen diese auslösen. So wird es in Zukunft möglich sein, gezielt gegenzusteuern “, so Larmann.

    Am Ende der Trainingsphase soll das System in der Lage sein, Komplikationen mit einer bisher nicht erreichten Exaktheit vorherzusagen. „Wir gehen davon aus, dass allein schon dieses Wissen dazu beiträgt, Komplikationen vorzubeugen, weil Risikopatienten gezielt intensiver überwacht und früher behandelt werden können“, gibt sich Larmann zuversichtlich. Während bei Risikopatienten oft eine intensivmedizinische Versorgung angezeigt ist, soll KoMed auf der anderen Seite Patienten mit niedrigem Risiko einen unnötigen Aufenthalt auf der Intensivstation ersparen: Wird heute z.B. ein Patient aufgrund seines Alters oder der Art des Eingriffs automatisch einer Hochrisikogruppe zugeteilt, soll KoMed zukünftig einen stabilen Gesundheitszustand erkennen und in die Risikoanalyse einfließen lassen. Vor dem klinischen Einsatz muss KoMed allerdings mit weiteren Patientendaten trainiert und in einer unabhängigen Patientengruppe validiert werden.

    Kontakt:
    Dr. Jan Larmann
    Anästhesiologische Universitätsklinik Heidelberg
    jan.larmann@med.uni-heidelberg.de

    Universitätsklinikum und Medizinische Fakultät Heidelberg: Krankenversorgung, Forschung und Lehre von internationalem Rang

    Das Universitätsklinikum Heidelberg ist eines der bedeutendsten medizinischen Zentren in Deutschland; die Medizinische Fakultät Heidelberg der Universität Heidelberg zählt zu den international renommierten biomedizinischen Forschungseinrichtungen in Europa. Gemeinsames Ziel ist die Entwicklung innovativer Diagnostik und Therapien sowie ihre rasche Umsetzung für den Patienten. Klinikum und Fakultät beschäftigen rund 13.700 Mitarbeiterinnen und Mitarbeiter und engagieren sich in Ausbildung und Qualifizierung. In mehr als 50 klinischen Fachabteilungen mit fast 2.000 Betten werden jährlich circa 80.000 Patienten voll- und teilstationär und mehr als 1.000.000 mal Patienten ambulant behandelt. Gemeinsam mit dem Deutschen Krebsforschungszentrum und der Deutschen Krebshilfe hat das Universitätsklinikum Heidelberg das Nationale Centrum für Tumorerkrankungen (NCT) Heidelberg etabliert, das führende onkologische Spitzenzentrum in Deutschland. Das Heidelberger Curriculum Medicinale (HeiCuMed) steht an der Spitze der medizinischen Ausbildungsgänge in Deutschland. Derzeit befinden sich an der Medizinischen Fakultät Heidelberg rund 3.500 angehende Ärztinnen und Ärzte in Studium und Promotion.

    www.klinikum-heidelberg.de


    Images

    Wissenschaftler des Universitätsklinikums Heidelberg wollen Algorithmus entwickeln, der das individuelle Operationsrisiko eines Patienten vorhersagen kann.
    Wissenschaftler des Universitätsklinikums Heidelberg wollen Algorithmus entwickeln, der das individu ...

    Universitätsklinikum Heidelberg


    Criteria of this press release:
    Journalists, Scientists and scholars, Students, all interested persons
    Information technology, Medicine
    transregional, national
    Research projects
    German


     

    Help

    Search / advanced search of the idw archives
    Combination of search terms

    You can combine search terms with and, or and/or not, e.g. Philo not logy.

    Brackets

    You can use brackets to separate combinations from each other, e.g. (Philo not logy) or (Psycho and logy).

    Phrases

    Coherent groups of words will be located as complete phrases if you put them into quotation marks, e.g. “Federal Republic of Germany”.

    Selection criteria

    You can also use the advanced search without entering search terms. It will then follow the criteria you have selected (e.g. country or subject area).

    If you have not selected any criteria in a given category, the entire category will be searched (e.g. all subject areas or all countries).