idw – Informationsdienst Wissenschaft

Nachrichten, Termine, Experten

Grafik: idw-Logo
Grafik: idw-Logo

idw - Informationsdienst
Wissenschaft

Science Video Project
idw-Abo

idw-News App:

AppStore

Google Play Store



Instance:
Share on: 
12/18/2020 15:25

Bayreuth research team: High pressure causes hydrogen variants to collapse

Christian Wißler Pressestelle
Universität Bayreuth

    Hydrogen exists as a gaseous compound of two hydrogen atoms (H2). Under normal laboratory conditions, H2 occurs in the variants "ortho hydrogen" and "para hydrogen". Until now, it has been unclear how these variants behave under very high pressure. Researchers at the University of Bayreuth have now found the answer. Both ortho- and para-hydrogen become unstable under high pressure and cease to exist as distinguishable states. The research results presented in Nature Communication extend our physical understanding of fundamental quantum mechanical processes.

    The two states of molecular hydrogen, ortho- and para-hydrogen, are known in research as spin isomers. They have the same chemical structure, but differ in the way the nuclei of the "twin atoms" connected in an H2 molecule relate to each other in terms of their angular momentum. This results in different physical properties of the spin isomers, for example differences in electrical and thermal conductivity. The question of whether spin isomers coexist under very high pressures is of great interest for planetary research and also for the fundamentals of quantum mechanics. Gas giants such as Jupiter contain large amounts of gaseous hydrogen. In these planets, the H2 molecules are subjected to compressive pressure many hundreds of times higher than that found in the Earth's atmosphere.

    "If the two spin isomers were distributed uniformly in gas giants, important conclusions about the magnetic fields of these planets and their stability could be derived. However, in our study we have now succeeded for the first time in demonstrating that ortho- and para-hydrogen are destabilized by extremely high compression pressure. Their respective characteristic properties are lost at around 70 gigapascals. This evidence can significantly expand our understanding of quantum mechanical processes," says first author and physicist Dr. Thomas Meier from the University of Bayreuth.

    In the study now published in "Nature Communications", two research institutions at the University of Bayreuth cooperated with each other: the Laboratory of Crystallography and the Bavarian Research Institute of Experimental Geochemistry & Geophysics (BGI). Crucial to their success was a method that combined high-pressure research in geosciences and materials science with nuclear magnetic resonance spectroscopy (NMR). For the development of this method, namely high-pressure nuclear magnetic resonance spectroscopy, the BGI was honoured in 2018 as the winner of the nationwide "Excellent Landmarks in the Land of Ideas" competition.


    Contact for scientific information:

    Dr. Thomas Meier
    Bavarian Research Institute of Experimental Geochemistry & Geophysics (BGI)
    University of Bayreuth
    Phone: +49 (0)921 55-3739
    Preferably by E-mail: thomas.meier@uni-bayreuth.de


    Original publication:

    T. Meier, D. Laniel, M. Pena-Alvarez, F. Trybel, S. Khandarkhaeva, A. Krupp, J. Jacobs, N. Dubrovinskaia, L. Dubrovinsky: Nuclear spin coupling crossover in dense molecular hydrogen. Nature Communications (2020), 11, 1-7. DOI: https://doi.org/10.1038/s41467-020-19927-y


    Images

    Criteria of this press release:
    Journalists, Scientists and scholars, Students, Teachers and pupils, all interested persons
    Chemistry, Geosciences, Physics / astronomy
    transregional, national
    Research results, Scientific Publications
    English


     

    Help

    Search / advanced search of the idw archives
    Combination of search terms

    You can combine search terms with and, or and/or not, e.g. Philo not logy.

    Brackets

    You can use brackets to separate combinations from each other, e.g. (Philo not logy) or (Psycho and logy).

    Phrases

    Coherent groups of words will be located as complete phrases if you put them into quotation marks, e.g. “Federal Republic of Germany”.

    Selection criteria

    You can also use the advanced search without entering search terms. It will then follow the criteria you have selected (e.g. country or subject area).

    If you have not selected any criteria in a given category, the entire category will be searched (e.g. all subject areas or all countries).