idw – Informationsdienst Wissenschaft

Nachrichten, Termine, Experten

Grafik: idw-Logo
Grafik: idw-Logo

idw - Informationsdienst
Wissenschaft

Science Video Project
idw-Abo

idw-News App:

AppStore

Google Play Store



Instance:
Share on: 
01/11/2021 15:59

Aus Licht wird Dunkelheit

Clarissa Grygier Kommunikation und Marketing
Max-Planck-Institut für die Physik des Lichts

    Mikroresonatoren sind kleine Strukturen aus Glas, in denen Licht zirkulieren und sich dadurch verstärken kann. Allerdings streuen kleinste Unebenheiten im Material einen Teil des Lichts ständig zurück, was die die Funktion der Resonatoren einschränkt. Wissenschaftler*innen ist es nun gelungen, diesen Störeffekt weitgehend zu unterdrücken. Ihre Erkenntnisse können viele Anwendungen der Mikroresonatoren verbessern: in Feldern wie der Messtechnik, etwa genauere Sensoren für Drohnen, bis hin zur optischen Informationsverarbeitung in Glasfasernetzen und Computern.

    Die Ergebnisse des Teams am Max-Planck-Institut für die Physik des Lichts (Deutschland), dem Imperial College London und dem National Physical Laboratory (beide in Großbritannien) hat die Fachzeitschrift Light: Science and Applications aus der Verlagsgruppe Nature jetzt veröffentlicht.

    Wissenschaftler*innen und Ingenieur*innen nutzen optische Mikroresonatoren in immer mehr Anwendungsgebieten: Die kleinen Bauteile werden auch als Lichtfallen bezeichnet. Weil sich kleinste Unebenheiten im Material und der Oberfläche nicht verhindern lassen, kommt es immer zu einem gewissen Maß an Rückreflexionen. Diese intrinsische Rückstreuung kann die Funktion des Mikroresonators stören. Um diesen unerwünschten Effekt zu verringern, ließ sich das deutsch-britische Team von Noise-Cancelling-Kopfhörern inspirieren.

    „In diesen Kopfhörern wird phasenverschobener Schall abgespielt, um unerwünschte Hintergrundgeräusche zu unterdrücken“, erklärt Hauptautor Andreas Svela vom Quantum Measurement Lab am Imperial College London. „In unserem Fall nutzen wir phasenverschobenes Licht, um das rückreflektierte Licht zu unterdrücken.“

    Um das phasenverschobene Licht zu erzeugen, nutzen die Wissenschaftler*innen eine scharfe Spitze aus dem Metall Wolfram in der Nähe der Oberfläche des Mikroresonators. Genau wie die intrinsischen Unebenheiten erzeugt auch die Metallspitze Rückstreuung. Aber es gibt einen wichtigen Unterschied: Die Phase des Lichts, das von der Metallspitze reflektiert wird, lässt sich durch deren Position kontrollieren und verändern. Dies ermöglicht es den Forscher*innen, das durch die Metallspitze reflektierte Licht so mit der Rückstreuung im Ring wechselwirken zu lassen, dass sich die Reflexionen gegenseitig aufheben – sie erzeugen Dunkelheit mit Licht.

    „Es ist nicht intuitiv, dass wir die Rückstreuung verringern können, indem wir eine zusätzliche Streuungsquelle hinzufügen“, sagt Co-Autor und Gruppenleiter Pascal Del’Haye vom Max-Planck-Institut für die Physik des Lichts. Die nun veröffentlichte Arbeit zeigt eine rekordverdächtige Verringerung von über 30 Dezibel im Vergleich zur intrinsischen Rückstreuung. Anders ausgedrückt: die Methode reduziert die unerwünschten Effekte auf ein Tausendstel.

    „Diese Ergebnisse sind von großer Bedeutung, da sich die Methode bei sehr vielen existierenden und künftigen Technologien anwenden lässt, die mit Mikroresonatoren arbeiten“, sagt Michael Vanner vom Quantum Measurement Lab am Imperial College London. Beispielsweise kann diese Technik dazu beitragen, bessere Gyroskope herzustellen, das sind Sensoren, die z.B. Drohnen bei der Navigation helfen. Auch tragbare optische Spektroskopie-Systeme können damit verbessert werden. Das eröffnet neue Möglichkeiten wie etwa Sensoren in Smartphones, die gefährliche Gase erkennen oder die Qualität von Lebensmitteln einschätzen können. Auch optische Glasfasernetze profitieren von der Technik, da eine bessere Signalqualität die Übertragung von mehr Daten erlaubt.


    Contact for scientific information:

    Dr. Pascal Del'Haye, pascal.delhaye@mpl.mpg.de


    Original publication:

    A. Ø. Svela, J. M. Silver, L. Del Bino, S. Zhang, M. T. M. Woodley, M. R. Vanner, and P. Del’Haye: Coherent suppression of backscattering in optical microresonators, Light: Science and Applications (2020), doi.org/10.1038/s41377-020-00440-2


    Images

    Ein optischer Mikroresonator und eine scharfe Wolframspitze. Durch die Position der Spitze lässt sich die Menge der Rückreflexionen steuern. Das Team konnte die intrinsische Rückstreuung damit auf ein Tausendstel reduzieren.
    Ein optischer Mikroresonator und eine scharfe Wolframspitze. Durch die Position der Spitze lässt sic ...
    Andreas Svela
    MPL/Andreas Svela


    Criteria of this press release:
    Business and commerce, Journalists, Scientists and scholars, Students
    Physics / astronomy
    transregional, national
    Research results
    German


     

    Help

    Search / advanced search of the idw archives
    Combination of search terms

    You can combine search terms with and, or and/or not, e.g. Philo not logy.

    Brackets

    You can use brackets to separate combinations from each other, e.g. (Philo not logy) or (Psycho and logy).

    Phrases

    Coherent groups of words will be located as complete phrases if you put them into quotation marks, e.g. “Federal Republic of Germany”.

    Selection criteria

    You can also use the advanced search without entering search terms. It will then follow the criteria you have selected (e.g. country or subject area).

    If you have not selected any criteria in a given category, the entire category will be searched (e.g. all subject areas or all countries).