idw - Informationsdienst
Wissenschaft
ETH-Forschende gehören zu den ersten Wissenschaftlern, welche Mikrovehikel mithilfe von Ultraschall gezielt gegen einen Flüssigkeitsstrom bewegen können. In Zukunft sollen die winzigen Vehikel in der Blutbahn eingesetzt werden und so die Medizin revolutionieren.
Winzige Vehikel, so klein, dass sie durch unsere Blutgefässe navigieren können, sollen es Ärzten in Zukunft erlauben, im Körperinnern Biopsien zu nehmen, Stents einzusetzen oder Medikamente präzise an schwer zu erreichende Stellen zu transportieren. Wissenschaftler weltweit erforschen und entwickeln derzeit solche Mikrovehikel. Angetrieben und gelenkt werden sie meist über magnetische oder akustische Felder oder mit Licht. Allerdings war es bisher eine grosse Herausforderung, Mikrovehikel gegen einen Flüssigkeitsstrom zu bewegen. Dies ist unter anderem nötig, damit die Winzlinge in Blutgefässen entgegen der Fliessrichtung des Bluts navigieren können. Forschende der ETH Zürich haben nun Mikrovehikel entwickelt, welche von einem externen Feld angetrieben werden und gegen den Strom schwimmen können.
In ihrem Laborexperiment nutzten die Forschenden unter der Leitung von Daniel Ahmed und Bradley Nelson, Professoren am Departement Maschinenbau und Verfahrenstechnik der ETH Zürich, magnetische Eisenoxid-Polymer-Kügelchen mit einem Durchmesser von 3 Mikrometern. In einem Magnetfeld ballen sich diese zu einem Schwarm mit einem Durchmesser von 15 bis 40 Mikrometern. Die Wissenschaftler untersuchten das Verhalten dieses Mikrokügelchen-Schwarms in einem dünnen Glasröhrchen, durch welches Flüssigkeit strömte. Die verwendeten Glasröhrchen hatten einen Durchmesser von 150 bis 300 Mikrometern und somit ähnliche Ausmasse wie die Blutgefässe in einem Tumor.
Um den Kügelchenschwarm in diesem Röhrchen stromaufwärts zu bewegen, nutzten die ETH-Forschenden denselben Kniff, den auch Bootsfahrer in einem Fluss nutzen: Letztere rudern in Ufernähe stromaufwärts. Dort ist die Fliessgeschwindigkeit wegen des Reibungswiderstands des Ufers geringer als in der Flussmitte.
Mithilfe von Ultraschall einer bestimmten Frequenz brachten die Wissenschaftler den Mikrokügelchen-Schwarm zunächst in die Nähe der Röhrchenwand. Anschliessend konnten die Forschenden den Schwarm mit einem rotierenden Magnetfeld entgegen der Flussrichtung bewegen.
Als nächstes möchten die Forschenden das Verhalten der Mikrovehikel in Blutgefässen von Tieren untersuchen. «Weil sowohl Ultraschallwellen als auch Magnetfelder Körpergewebe durchdringen, ist unsere Methode gut geeignet, um Mikrovehikel auch im Körperinnern zu lenken», sagt ETH-Professor Ahmed.
Zu den angestrebten zukünftigen Anwendungsfeldern wird die Mikrochirurgie gehören – etwa das Entstopfen von verstopften Blutgefässen. Ausserdem könnten die Mikrovehikel dereinst verwendet werden, um Krebsmedikamente über die Blutgefässe zu Tumoren zu bringen und um sie dort ins Tumorgewebe einzuschleusen. Ein weiteres Anwendungsfeld ist schliesslich das Einbringen von Medikamenten aus Blutgefässen ins Hirngewebe.
Daniel Ahmed, dahmed@ethz.ch
https://ethz.ch/de/news-und-veranstaltungen/eth-news/news/2021/02/mit-schallwell...
Criteria of this press release:
Journalists
Mechanical engineering, Medicine
transregional, national
Research results, Transfer of Science or Research
German
You can combine search terms with and, or and/or not, e.g. Philo not logy.
You can use brackets to separate combinations from each other, e.g. (Philo not logy) or (Psycho and logy).
Coherent groups of words will be located as complete phrases if you put them into quotation marks, e.g. “Federal Republic of Germany”.
You can also use the advanced search without entering search terms. It will then follow the criteria you have selected (e.g. country or subject area).
If you have not selected any criteria in a given category, the entire category will be searched (e.g. all subject areas or all countries).