idw – Informationsdienst Wissenschaft

Nachrichten, Termine, Experten

Grafik: idw-Logo
Grafik: idw-Logo

idw - Informationsdienst
Wissenschaft

Science Video Project
idw-Abo

idw-News App:

AppStore

Google Play Store



Instance:
Share on: 
02/25/2021 12:30

Super-Resolution RNA Imaging in Live Cells

Marietta Fuhrmann-Koch Kommunikation und Marketing
Universität Heidelberg

    Ribonucleic acid (RNA) is key to various fundamental biological processes. It transfers genetic information, translates it into proteins or supports gene regulation. To achieve a more detailed understanding of the precise functions it performs, researchers based at Heidelberg University and at the Karlsruhe Institute of Technology have devised a new fluorescence imaging method which enables live-cell RNA imaging with unprecedented resolution.

    Press Release
    Heidelberg, 25 February 2021

    Super-Resolution RNA Imaging in Live Cells
    Innovative method provides new insight into molecular processes involving RNA

    Ribonucleic acid (RNA) is key to various fundamental biological processes. It transfers genetic information, translates it into proteins or supports gene regulation. To achieve a more detailed understanding of the precise functions it performs, researchers based at Heidelberg University and at the Karlsruhe Institute of Technology (KIT) have devised a new fluorescence imaging method which enables live-cell RNA imaging with unprecedented resolution.

    The method is based on a novel molecular marker called Rhodamine-Binding Aptamer for Super-Resolution Imaging Techniques (RhoBAST). This RNA-based fluorescence marker is used in combination with the dye rhodamine. Due to their distinctive properties, marker and dye interact in a very specific way, which makes individual RNA molecules glow. They can then be made visible using single-molecule localisation microscopy (SMLM), a super-resolution imaging technique. Due to a lack of suitable fluorescence markers, direct observation of RNA via optical fluorescence microscopy has been severely limited to date.

    RhoBAST was developed by researchers from the Institute of Pharmacy and Molecular Biotechnology (IPMB) at Heidelberg University and the Institute of Applied Physics (APH) at KIT. The marker created by them is genetically encodable, which means that it can be fused to the gene of any RNA produced by a cell. RhoBAST itself is non-fluorescent, but lights up a cell-permeable rhodamine dye by binding to it in a very specific way. “This leads to a dramatic increase in fluorescence achieved by the RhoBAST-dye complex, which is a key requirement for obtaining excellent fluorescence images,” explains Dr Murat Sünbül from the IPMB, adding: “However, for super-resolution RNA imaging the marker needs additional properties.”

    The researchers discovered that each rhodamine dye molecule remains bound to RhoBAST for approximately one second only before becoming detached again. Within seconds, this procedure repeats itself with a new dye molecule. “It is quite rare to find strong interactions – as between RhoBAST and rhodamine – combined with exceptionally fast exchange kinetics,” says Prof. Dr Gerd Ulrich Nienhaus from the APH. Since rhodamine only lights up after binding to RhoBAST, the constant string of newly emerging interactions between marker and dye results in incessant “blinking”. “This ‘on-off switching’ is exactly what we need for SMLM imaging,” continues Prof. Nienhaus.

    At the same time, the RhoBAST system solves yet another important problem. Fluorescence images are collected under laser light irradiation, which destroys the dye molecules over time. The fast dye exchange ensures that photobleached dyes are replaced by fresh ones. This means that individual RNA molecules can be observed for longer periods of time, which can greatly improve image resolution, as Prof. Dr Andres Jäschke, a scientist at the IPMB, explains.

    The researchers from Heidelberg and Karlsruhe were able to demonstrate the superb properties of RhoBAST as an RNA marker by visualising RNA structures inside gut bacteria (Escherichia coli) and cultured human cells with excellent localisation precision. “We can reveal details of previously invisible subcellular structures and molecular interactions involving RNA using super-resolution fluorescence microscopy. This will enable a fundamentally new understanding of biological processes,” says Prof. Jäschke.

    The research carried out by Murat Sünbül and Andres Jäschke in the context of the study was supported by the German Research Foundation (DFG) and the work performed by Gerd Ulrich Nienhaus was supported by the DFG and the Helmholtz Association. The results were published in the journal “Nature Biotechnology”.

    Contact:
    Communications and Marketing
    Press Office
    Phone +49 6221 54-2311
    presse@rektorat.uni-heidelberg.de


    Contact for scientific information:

    Contacts at Heidelberg University:
    Dr Murat Sünbül
    Prof. Dr Andres Jäschke
    Institute of Pharmacy and Molecular Biotechnology
    Phone +49 6221 54 4853
    msunbul@uni-heidelberg.de
    jaeschke@uni-hd.de

    Contact at Karlsruhe Institute of Technology:
    Prof. Dr Gerd Ulrich Nienhaus
    Institute of Applied Physics
    Phone +49 721 608 43401
    uli.nienhaus@kit.edu


    Original publication:

    M. Sunbul, J. Lackner, A. Martin, D. Englert, B. Hacene, K. Nienhaus, G. U. Nienhaus, A. Jäschke: Super-resolution RNA imaging using a rhodamine-binding aptamer with fast exchange kinetics, Nature Biotechnology, 11 February 2021 (date of online publication), https://doi.org/10.1038/s41587-020-00794-3


    Images

    Conventional epifluorescence (left) and super-resolved localisation microscopy images of gut bacteria (Escherichia coli), using the new RhoBAST-dye marker complex for fluorescence labelling. Scale bar: 1 µm.
    Conventional epifluorescence (left) and super-resolved localisation microscopy images of gut bacteri ...

    Heidelberg University/Karlsruhe Institute of Technology


    Criteria of this press release:
    Journalists, Scientists and scholars
    Biology, Chemistry, Physics / astronomy
    transregional, national
    Research results
    English


     

    Help

    Search / advanced search of the idw archives
    Combination of search terms

    You can combine search terms with and, or and/or not, e.g. Philo not logy.

    Brackets

    You can use brackets to separate combinations from each other, e.g. (Philo not logy) or (Psycho and logy).

    Phrases

    Coherent groups of words will be located as complete phrases if you put them into quotation marks, e.g. “Federal Republic of Germany”.

    Selection criteria

    You can also use the advanced search without entering search terms. It will then follow the criteria you have selected (e.g. country or subject area).

    If you have not selected any criteria in a given category, the entire category will be searched (e.g. all subject areas or all countries).