idw - Informationsdienst
Wissenschaft
Langzeitstudie des Fraunhofer IAO deckt Auswirkungen von COVID-19 auf psychisches Wohlbefinden auf
In der deutschlandweiten Online-Umfrage WIBCE hat das Fraunhofer IAO gemeinsam mit dem Uniklinikum Dresden und dem Unternehmen seracom GmbH mithilfe von KI-Algorithmen die Langzeitwirkungen der Corona-Pandemie untersucht. Die Ergebnisse zeigen, dass jüngere Menschen trotz einem objektiv eher geringem gesundheitlichem Risiko psychisch stärker belastet sind als Ältere.
Kontaktbeschränkungen, Ausgangssperren, Isolation: der Alltag in der Corona-Pandemie hat unvermeidliche Auswirkungen auf die Menschen und ihr soziales Leben. Eine gesunde Psyche ist ein wichtiger Schutzfaktor, der auch das Immunsystem stärken und Krankheiten vorbeugen kann. Vor diesem Hintergrund haben das Uniklinikum Dresden, die seracom GmbH und das Fraunhofer-Institut für Arbeitswirtschaft und Organisation IAO eine Online-Befragung durchgeführt, um gesundheitsbezogene, soziale, verhaltensbezogene und psychologische Auswirkungen der COVID-19-Pandemie zu untersuchen.
Studie erhebt Langzeitwirkungen auf psychisches Wohlbefinden
Ziel der Studie war es, mit Hilfe von KI-Algorithmen Langzeitentwicklungen zu identifizieren. Die 275 Befragten nahmen daher mehrmals über den Zeitraum von April bis August 2020 an der Umfrage teil. Somit kann untersucht werden, ob es spezielle Personengruppen gibt, die unter der Corona-Pandemie nicht nur augenblicklich (wie bei einer einmaligen Bestandsaufnahme), sondern kontinuierlich besonders leiden. Die Antworten der Teilnehmenden haben die Forschenden mit Machine-Learning-Algorithmen unter die Lupe genommen und konnten so bisher unsichtbare Zusammenhänge sichtbar machen. »Nur dank unserer KI-Methodik war es uns möglich, solch großen Datenmengen mit überschaubarem Aufwand auszuwerten« betont Doris Janssen, Projektleiterin am Fraunhofer IAO. Ihre Kollegin Katharina Lingelbach ergänzt: »Das Projekt war für uns eine sehr gute Chance, anhand solcher Echtdaten die Methodik ausprobieren zu können.«
KI-Algorithmen machen zwei Personengruppen sichtbar: die Resilienten und die Besorgten
Die Ergebnisse waren teilweise überraschend und haben zwei grundlegend verschiedene Cluster innerhalb der Teilnehmenden offengelegt: Das Cluster »Unbeschwert« ist stabil resilient und geht sehr relaxt mit der Corona-Pandemie um. Die psychische Belastung dieses Clusters war im Schnitt sehr nahe an den Referenzwerten vor der Coronazeit. Das heißt, diese Personen machen psychisch einen resilienten, stabilen Eindruck. Zu diesem Cluster gehören ca. zwei Drittel der untersuchten Personen. Das Cluster »Besorgt« umfasst das verbleibende Drittel der Untersuchten und ist auch ohne eine Erkrankung stark von der Corona-Pandemie betroffen. Die psychische Belastung ist bei dieser Personengruppe höher und liegt deutlich über den Referenzwerten der Vor-Coronazeit. Diese Bevölkerungsgruppe geht also ängstlicher und niedergeschlagener an die Situation heran.
Datenauswertung mit Machine-Learning-Methoden als Entscheidungshilfe
Die Studie hat deutlich gemacht, dass gerade jüngere Menschen mit eher geringerem Einkommen durch die Corona-Pandemie von vergleichsweise großen Sorgen geplagt sind – und das, obwohl sie objektiv einem relativ geringen gesundheitlichen Risiko ausgesetzt sind. Es ist daher auch gesellschaftlich eine wichtige Aufgabe, die Sorgen und Bedenken dieser Bevölkerungsgruppe ernst zu nehmen und zu adressieren. Die WIBCE-Studie ist ein wichtiger Gradmesser für Entscheidungstragende aus der Politik. Die Machine-Learning-Methoden helfen dabei zu erkennen, welche Personen besondere Unterstützung benötigen. Eine individuelle Reaktion auf das persönliche psychische Wohlbefinden könnte gerade chronisch kranken Menschen dabei helfen, auch während Zeiten ohne persönliche Kontaktmöglichkeit zur medizinischen Therapie angemessene Unterstützung zu erhalten.
Juliane Segedi
Presse und Öffentlichkeitsarbeit
Fraunhofer IAO
Nobelstr. 12
70569 Stuttgart
Telefon +49 711 970-2343
juliane.segedi@iao.fraunhofer.de
Lingelbach, Katharina; Janssen, Doris et al.: Gesellschaftliche und psychologische Auswirkungen der Covid-19-Pandemie in Deutschland, Stuttgart: Fraunhofer IAO, 2021.
http://publica.fraunhofer.de/starweb/servlet.starweb?path=urn.web&search=urn...
https://www.iao.fraunhofer.de/de/presse-und-medien/aktuelles/auswirkungen-von-co...
https://wibce.org/survey/start
https://www.fraunhofer.de/de/forschung/aktuelles-aus-der-forschung/fraunhofer-vs...
Criteria of this press release:
Journalists, Scientists and scholars, Students, all interested persons
Information technology, Social studies
transregional, national
Research results, Scientific Publications
German
You can combine search terms with and, or and/or not, e.g. Philo not logy.
You can use brackets to separate combinations from each other, e.g. (Philo not logy) or (Psycho and logy).
Coherent groups of words will be located as complete phrases if you put them into quotation marks, e.g. “Federal Republic of Germany”.
You can also use the advanced search without entering search terms. It will then follow the criteria you have selected (e.g. country or subject area).
If you have not selected any criteria in a given category, the entire category will be searched (e.g. all subject areas or all countries).