idw - Informationsdienst
Wissenschaft
Eine Gruppe Chemiker:innen am Institut für Physikalische und Theoretische Chemie der Universität Regensburg hat den tatsächlichen Wirkmechanismus von Adenosintriphosphat, kurz ATP, aufgeklärt und ein komplexes Wechselspiel verschiedener Effekte und Phänomene gezeigt.
Das Molekül Adenosintriphosphat, kurz ATP, ist als Energiewährung lebender Zellen bekannt und spielt eine wichtige Rolle für die Funktion vieler molekularer Maschinen im Körper. So ermöglicht ATP die Kontraktion von Muskelgewebe oder das Pumpen von Ionen durch Zellmembrane. Erstaunlicherweise ist die zelluläre Konzentration an ATP aber erheblich größer als für diese Funktion unmittelbar erforderlich, daher gibt es seit geraumer Zeit Vermutungen über weitere, sekundäre Funktionen. Dabei fiel das Augenmerk auf den Einfluss von ATP auf die Stabilität und das Aggregationsverhalten von Proteinen in Zellen.
Im Adenosin hat ATP unpolare, hydrophobe Gruppen, während die Triphosphatgruppe sehr gut wasserlöslich ist. Aufgrund dieser „amphiphilen“ Struktur wurde von Wissenschaftlern um Avinash Patel und Anthony Hyman in Dresden in einer 2017 in Science erschienenen Veröffentlichung angenommen, dass ATP eine tensidähnliche, 1916 von dem Biochemiker Carl Neuberg als „Hydrotropie“ bezeichnete, Wirkung zeigt. Damit könnte die beobachtete Stabilisierung von aggregationsanfälligen Proteinen, wie sie zum Beispiel für neurodegenerative Erkrankungen wie Alzheimer eine Rolle spielen, erklärt werden.
Eine Gruppe Chemiker:innen um die Doktoranden Johannes Mehringer und Tuan-Minh Do am Institut für Physikalische und Theoretische Chemie der Universität Regensburg hat jetzt den tatsächlichen Wirkmechanismus von ATP bei solchen Proteinen aufgeklärt und gezeigt, dass eine klassische Hydrotropie nicht vorliegt, sondern es sich um ein komplexes Wechselspiel verschiedener Effekte und Phänomene handelt.
Für viele Proteine ist eine Umlagerung zu einer β-faltblattreichen Konformation der erste Schritt zur Aggregation bzw. Fibrillierung. Dabei lagern sich mehrere derartig fehlgefaltete Peptide zu großen Aggregaten zusammen, die oft eine faserartige, als Amyloid bekannte, Struktur annehmen. Dieser Vorgang wird in Verbindung mit einer Reihe von Erkrankungen wie Alzheimer oder Parkinson gebracht. ATP kann hier eine Aggregation zum Teil unterdrücken, indem sich der Adenin-Teil des Moleküls zwischen die Strukturen schiebt. Eine Wechselwirkung zwischen den elektronischen π-Systemen in Adenin bzw. in den β-Faltblättern spielt hier die entscheidende Rolle. Für diesen Effekt ist der amphiphile Charakter des ATPs nicht maßgeblich, sodass eine tensidartige Wirkung ausgeschlossen scheint. Dagegen haben die von Franz Hofmeister entdeckten spezifischen Ioneneffekte und die starke Hydratisierung der Phosphatgruppen einen weiteren wichtigen Einfluss.
Um zu diesen Erkenntnissen zu kommen, erwies sich die Kombination aus detaillierten Computersimulationen in der Arbeitsgruppe Horinek mit einer Vielzahl von Experimenten in der Arbeitsgruppe Kunz als überaus fruchtbar. Die Ergebnisse wurden vor kurzem in der Zeitschrift Cell Reports Physical Science veröffentlicht. Basierend auf der Aufklärung des Wirkmechanismus werden derzeit am Lehrstuhl von Professor Dr. Werner Kunz in Kooperation mit dem Lehrstuhl von Professor Dr. Stephan Schneuwly aus der Biologie weitere Moleküle getestet, die eventuell eine Fibrillierung und damit vielleicht den Ausbruch von neurodegenerativen Krankheiten verhindern oder verlangsamen könnten.
Prof. Dr. Werner Kunz
Universität Regensburg
Institut für Physikalische und Theoretische Chemie
Telefon +49 941 943-4296
Werner.Kunz@ur.de
Prof. Dr. Dominik Horinek
Universität Regensburg
Institut für Physikalische und Theoretische Chemie
Telefon +49 941 943-4745
Dominik.Horinek@ur.de
Johannes Mehringer, Tuan-Minh Do, Didier Touraud, Max Hohenschutz, Ali Khoshsima, Dominik Horinek und Werner Kunz, Hofmeister versus Neuberg: is ATP really a biological hydrotrope?, in: Cell Reports Physical Science (2021). DOI: https://doi.org/10.1016/j.xcrp.2021.100343
https://www.uni-regensburg.de/chemistry-pharmacy/solution-chemistry-kunz/index.h...
https://www.uni-regensburg.de/Fakultaeten/nat_Fak_IV/Physikalische_Chemie/Horine...
https://www.uni-regensburg.de/biologie-vorklinische-medizin/entwicklungsbiologie...
https://www.uni-regensburg.de/chemistry-pharmacy/solution-chemistry-kunz/staff/g...
Criteria of this press release:
Journalists, Scientists and scholars
Biology, Chemistry
transregional, national
Research results, Scientific Publications
German
You can combine search terms with and, or and/or not, e.g. Philo not logy.
You can use brackets to separate combinations from each other, e.g. (Philo not logy) or (Psycho and logy).
Coherent groups of words will be located as complete phrases if you put them into quotation marks, e.g. “Federal Republic of Germany”.
You can also use the advanced search without entering search terms. It will then follow the criteria you have selected (e.g. country or subject area).
If you have not selected any criteria in a given category, the entire category will be searched (e.g. all subject areas or all countries).