idw – Informationsdienst Wissenschaft

Nachrichten, Termine, Experten

Grafik: idw-Logo
Grafik: idw-Logo

idw - Informationsdienst
Wissenschaft

Science Video Project
idw-Abo

idw-News App:

AppStore

Google Play Store



Instance:
Share on: 
03/16/2021 15:50

Salt consumption controls autoimmune disease

Dr. Christiane Menzfeld Öffentlichkeitsarbeit
Max-Planck-Institut für Biochemie

    Multiple sclerosis (MS) is a chronic inflammatory disease of the nervous system. In this autoimmune disease, the myelin sheath of the nerve cells is attacked by the patient's own immune system. Several animal models are available to study the disease. Researchers at the Max Planck Institute of Biochemistry have now been able to show, contrary to the results of other studies, that moderately increased salt consumption in mice has no negative effect on the course of the disease. In transgenic mice that develop spontaneous MS-like disease, increased salt consumption led to a suppression of the disease. This study was published in the journal PNAS.

    Sodium chloride, table salt, is an essential mineral that we must consume for a healthy life. However, excessive salt consumption is one of the known health risks, as it has been linked to cardiovascular and kidney diseases. Researchers are also interested in understanding the effect of excessive salt consumption in autoimmune and inflammatory diseases such as MS. Therefore, an animal model of multiple sclerosis called Experimental Autoimmune Encephalomyelitis (EAE) has been used in the past to study the effect of excessive salt consumption. It has been reported that it leads to exacerbation of the disease.

    Different disease model, different result
    Gurumoorthy Krishnamoorthy, head of the research group "Neuroinflammation and Mucosal Immunology" at the Max Planck Institute of Biochemistry, and his team now show an opposite finding. The research group leader explains "For our studies, we used a different mouse model that spontaneously develops MS-like symptoms. We have no evidence that increased salt consumption in the animals promoted or exacerbated the disease." Surprisingly, the scientists were even able to show that increased salt consumption suppressed the development of the autoimmune disease.

    The blood-brain barrier
    "For the analysis, we focused on the blood-brain barrier," reports Shin-Young Na, first author of the study. The blood-brain barrier is an important barrier between the bloodstream and central nervous system. It prevents the uncontrolled flow of substances as well as immune cells from the blood into the central nervous system. So-called tight junctions help with this diffusion barrier. These are membrane molecules that, as the name suggests, create tight junctions between cells. "We could see that in the animals consuming an increased amount of salt, serum levels of the glucocorticoid hormone corticosterone were elevated. This increased level of corticosterone led to increased expression of tight junction molecules in the endothelial cells. As a result, the blood-brain barrier is strengthened and the entry of inflammatory T cells into the nervous system was blocked," Na further reports.

    Gurumoorthy Krishnamoorthy says, "Our results show that moderately increased salt consumption has multiple and potentially beneficial effects on central nervous system autoimmunity in mice. I assume that the opposite effect compared to the previous studies is related to the use of different animal models where the blood-brain barrier is artificially opened through injection of pertussis toxin. This is not the case in our disease model and this model is closer to the early stage of MS disease in humans."


    Contact for scientific information:

    Dr. Gurumoorthy Krishnamoorthy
    Neuroinflammation and Mucosal Immunology
    Max Planck Institute of Biochemistry
    Am Klopferspitz 18
    82152 Martinsried/Munich
    Germany
    E-mail: guru@biochem.mpg.de


    Original publication:

    S.-Y. Na, M. Janakiraman, A. Leliavski & G. Krishnamoorthy:
    High-salt diet suppresses autoimmune demyelination by regulating the blood-brain barrier permeability., PNAS, March 2021
    DOI: https://doi.org/10.1073/pnas.2025944118


    More information:

    https://www.biochem.mpg.de/krishnamoorthy - Research Website of Dr. Gurumoorthy Krishnamoorthy


    Images

    Criteria of this press release:
    Journalists, Scientists and scholars, Students, all interested persons
    Biology, Medicine
    transregional, national
    Research results, Scientific Publications
    English


     

    Help

    Search / advanced search of the idw archives
    Combination of search terms

    You can combine search terms with and, or and/or not, e.g. Philo not logy.

    Brackets

    You can use brackets to separate combinations from each other, e.g. (Philo not logy) or (Psycho and logy).

    Phrases

    Coherent groups of words will be located as complete phrases if you put them into quotation marks, e.g. “Federal Republic of Germany”.

    Selection criteria

    You can also use the advanced search without entering search terms. It will then follow the criteria you have selected (e.g. country or subject area).

    If you have not selected any criteria in a given category, the entire category will be searched (e.g. all subject areas or all countries).