idw – Informationsdienst Wissenschaft

Nachrichten, Termine, Experten

Grafik: idw-Logo
Grafik: idw-Logo

idw - Informationsdienst
Wissenschaft

Science Video Project
idw-Abo

idw-News App:

AppStore

Google Play Store



Instance:
Share on: 
03/19/2021 11:00

Elektronen eingegipst

UR Präsidialabteilung, Bereich Kommunikation & Marketing
Universität Regensburg

    Physiker aus Regensburg und Marburg maßschneidern die Wechselwirkung von Elektronen in atomar dünnen Festkörpern durch die Nähe zu einem schwingenden Kristall.

    Sperrfrist: 19.03.2021 10:00 GMT/11:00 CET

    In einem Kubikzentimeter eines Festkörpers befindet sich typischerweise die unvorstellbar große Zahl von 10²³ Elektronen – eine 1 mit 23 Nullen. Selbst eine scheinbar einfache Wechselwirkung zwischen Elektronen kann in einem derart extremen Vielteilchenproblem zu verblüffenden Korrelationen führen. Diese können bestimmte Festkörper in Supraleiter verwandeln, die elektrischen Strom völlig verlustfrei leiten. Normalerweise sind solch merkwürdige Phänomene „gottgegebene“ Materialeigenschaften. Die Entdeckung von atomar dünnen Schichtmaterialien, wie Graphen – einer einzelnen Lage Graphit – oder Übergangsmetall-Dichalkogeniden hat jedoch Möglichkeiten eröffnet, Elektronenkorrelationen und Phasenübergänge aktiv maßzuschneidern. Durch präzises Stapeln zweier Graphenlagen unter bestimmten Winkeln kann beispielsweise ein künstlicher Supraleiter hergestellt werden. Theoretische Arbeiten sagen voraus, dass auch die Kopplung der Elektronen an Atomschwingungen in den Schichtkristallen die Wechselwirkung der Elektronen entscheidend beeinflussen dürfte.

    Regensburger Physiker um Rupert Huber haben in einer Zusammenarbeit mit der Gruppe von Ermin Malic an der Philipps Universität in Marburg nun einen neuen Ansatz entwickelt, um die Wechselwirkung zwischen Elektronen in atomar dünnen Kristallen durch Kopplung an polare Gitterschwingungen eines benachbarten Materials zu kontrollieren. Dazu wurden Monolagen eines Übergangsmetall-Dichalkogenids einfach mit einer Schicht aus Calciumsulfat-Dihydrat bedeckt, das auch als Gips bekannt ist. Um die Kopplungsstärke zwischen Elektronen und Gitterschwingungen zu bestimmen, regten die Physiker zunächst Elektronen in einer halbleitenden Wolframdiselenid-Monolage mit Hilfe eines ultrakurzen Laserblitzes an. Dabei bleibt eine Fehlstelle – ein sogenanntes Loch – am ursprünglichen Platz des Elektrons zurück. Aufgrund ihrer gegensätzlichen Ladung sind Elektron und Loch durch die Coulomb-Anziehungskraft aneinandergebunden, wie ein Elektron im Wasserstoffatom an den Kern gebunden ist, und bilden ein sogenanntes Exziton. Um die Wechselwirkung zwischen den Ladungsträgern zu bestimmen, beobachten die Physiker die atomähnliche Energiestruktur der Exzitonen mit ultrakurzen infraroten Lichtimpulsen.

    Das überraschende Ergebnis: Wird die Wolframdiselenid-Monolagen mit einer dünnen Gipsschicht bedeckt, veränderte sich die interne Struktur der Exzitonen deutlich. „Allein die räumliche Nähe der Gipsschicht reicht aus, um eine starke Kopplung der internen Struktur der Exzitonen an polare Gitterschwingungen der Gipsstruktur zu erzeugen", sagt Philipp Merkl, der Erstautor der Studie. Obwohl dieser Kopplungsmechanismus zwischen Elektronen und Atomschwingungen in verschiedenen atomar dünnen Schichten stattfindet, ist die Wechselwirkung so stark, dass sie zu einem neuen Quasiteilchen verschmelzen. Nachdem die Forscher den „Dreh raushatten“, begannen sie mit diesem Effekt zu spielen: Indem sie eine weitere atomar dünne Schicht zwischen
    Wolframdiselenid und Gips einfügten, gelang es ihnen, den räumlichen Abstand zwischen Elektronen und Phononen atomar genau einzustellen. „Mit dieser Strategie konnten wir die Kopplungsstärke mit noch höherer Präzision kontrollieren", ergänzt der Koautor Dr. Chaw-Keong Yong. Und er ist überzeugt: „So dürften neue maßgeschneiderte elektronische Eigenschaften in zweidimensionalen Materialien realisierbar werden, die Anwendung in verlustfreier Elektronik und Quanteninformationstechnologien der Zukunft finden könnten."


    Contact for scientific information:

    Prof. Dr. Rupert Huber
    Lehrstuhl für Experimentelle und Angewandte Physik
    Universität Regensburg
    Tel.: 0941 943-2067
    E-Mail: rupert.huber@ur.de
    http://www.physik.uni-regensburg.de/forschung/huber/home.html


    Original publication:

    P. Merkl, C.-K. Yong, M. Liebich, I. Hofmeister, G. Berghäuser, E. Malic and R. Huber, “Proximity control of interlayer exciton-phonon hybridization in van der Waals heterostructures”, Nature Communications (2021), DOI: 10.1038/s41467-021-21780-6
    https://www.nature.com/articles/s41467-021-21780-6


    More information:

    https://www.nature.com/articles/s41467-021-21780-6


    Images

    Künstlerische Darstellung der Kopplung zwischen Exziton und Gitterschwingungen über eine Wolframdiselenid-Gips-Grenzfläche hinweg.
    Künstlerische Darstellung der Kopplung zwischen Exziton und Gitterschwingungen über eine Wolframdise ...
    Philipp Merkl


    Criteria of this press release:
    Journalists, Scientists and scholars, Students
    Biology, Chemistry, Electrical engineering, Physics / astronomy
    transregional, national
    Research results, Scientific Publications
    German


     

    Help

    Search / advanced search of the idw archives
    Combination of search terms

    You can combine search terms with and, or and/or not, e.g. Philo not logy.

    Brackets

    You can use brackets to separate combinations from each other, e.g. (Philo not logy) or (Psycho and logy).

    Phrases

    Coherent groups of words will be located as complete phrases if you put them into quotation marks, e.g. “Federal Republic of Germany”.

    Selection criteria

    You can also use the advanced search without entering search terms. It will then follow the criteria you have selected (e.g. country or subject area).

    If you have not selected any criteria in a given category, the entire category will be searched (e.g. all subject areas or all countries).