idw – Informationsdienst Wissenschaft

Nachrichten, Termine, Experten

Grafik: idw-Logo
Grafik: idw-Logo

idw - Informationsdienst
Wissenschaft

Science Video Project
idw-Abo

idw-News App:

AppStore

Google Play Store



Instance:
Share on: 
05/20/2021 20:00

Reißverschluss ermöglicht ein „neues Graphen“

Johannes Scholten Stabsstelle Hochschulkommunikation
Philipps-Universität Marburg

    Ein chemischer Reißverschluss macht es möglich, Molekülfäden zu Kohlenstoffnetzen zusammenzuschweißen, die sich von dem verwandten Werkstoff Graphen deutlich unterscheiden. Das zeigt ein internationales Forschungsteam unter Marburger Leitung im Wissenschaftsmagazin „Science“. Die neue Methode eröffnet Möglichkeiten für weitere maßgeschneiderte Materialien, erwarten die Autorinnen und Autoren um den Chemiker Professor Dr. Michael Gottfried von der Philipps-Universität Marburg.

    Nanoröhrchen, Fulleren, Graphen – die Ära der maßgeschneiderten Werkstoffe aus Kohlenstoff hat längst begonnen. „In Graphen ist jedes Kohlenstoffatom mit drei Nachbaratomen verbunden, so dass ein ebenes Wabenmuster aus sechseckigen Ringen entsteht“, erklärt Michael Gottfried. „Obwohl bereits zahlreiche andere Muster mit größeren oder kleineren Ringen vorgeschlagen worden sind, war bisher unklar, ob es solche Materialien gibt und wie sie hergestellt werden könnten.“

    Welche Eigenschaften weisen solche Materialien auf? „Die Eigenschaften können sehr unterschiedlich sein, auch wenn es sich immer um Kohlenstoff handelt. Entscheidend ist die Verknüpfung der Atome“, ergänzt der finnische Physiker Professor Dr. Peter Liljeroth, der zusammen mit Gottfried als Leitautor firmiert.

    Die Gruppe erzeugte ein flaches zweidimensionales Netz, das aus vier-, sechs- und achteckigen Ringen besteht. „Die Ringe sind in diesem sogenannten Biphenylen-Netzwerk völlig regelmäßig angeordnet“, erläutert Gottfried. „Die besondere Struktur ist jedoch nicht schon in den Vorläufermolekülen angelegt, aus denen das Netz aufgebaut wird; vielmehr bilden sich die vier- und achteckigen Ringe erst, während das Netz geknüpft wird.“
    Hierzu entwickelte das Team eine neue Methode: Auf einer glatten Goldoberfläche werden Moleküle zunächst zu Ketten verknüpft, die sich der Länge nach nebeneinander aufreihen. Dann verbinden sich benachbarte Ketten wie die zwei Hälften eines Reißverschlusses, wobei sich Wasserstoff- und Fluor-Atome von den Ketten ablösen.

    „Ein wichtiger Punkt dabei: Die Ketten liegen in zwei Varianten vor, die einander ähneln wie Bild und Spiegelbild, wie rechte und linke Hand“, legt Gottfried dar. Ketten derselben Form lagern sich geordnet aneinander, bevor die Verknüpfung beginnt. „Dies ist entscheidend, denn nur so entsteht die neuartige Kohlenstoffstruktur“, führt der Chemiker weiter aus: „Reagieren dagegen zwei Ketten unterschiedlicher Händigkeit, so entsteht das schon bekannte Graphen.“

    Anschließend untersuchte die Forschungsgruppe mittels spektroskopischer Verfahren, welche Eigenschaften das Material aufweist. Dabei stieß sie auf einen fundamentalen Unterschied zum verwandten Graphen: „Die Charakterisierung ergab, dass sich bereits extrem schmale Streifen des neuen Materials wie ein Metall verhalten, was bei Graphen nicht der Fall ist. Diese Streifen könnten daher als Nanodrähte in künftigen elektronischen Schaltkreisen aus Kohlenstoff eingesetzt werden“, erläutert der Erstautor Dr. Qitang Fan aus Gottfrieds Arbeitsgruppe. „Unsere Reißverschlusstechnik ebnet den Weg, um neue Designermaterialien auf Kohlenstoffbasis zu entwickeln und ihre Eigenschaften zu erforschen“, schlussfolgern die Autorinnen und Autoren aus den Ergebnissen.

    Professor Dr. Michael Gottfried lehrt Physikalische Chemie an der Philipps-Universität Marburg. Er gehört außerdem dem Marburger Sonderforschungsbereich 1083 der Deutschen Forschungsgemeinschaft an, der sich mit „Struktur und Dynamik innerer Grenzflächen“ befasst. Professor Dr. Peter Liljeroth leitet die „Atomic Scale Physics“-Gruppe an der Universität Aalto in Finnland. Darüber hinaus beteiligte sich der Marburger Chemie-Professor Dr. Ulrich Koert an der Forschungsarbeit. Die Deutsche Forschungsgemeinschaft, der Europäische Forschungsrat, die Alexander-von-Humboldt-Stiftung und weitere Förderorganisationen unterstützten die beteiligten Wissenschaftlerinnen und Wissenschaftler finanziell.

    Originalveröffentlichung: Qitang Fan, Linghao Yan & al.: Biphenylene network: A nonbenzenoid carbon allotrope, Science 2021, DOI: 10.1126/science.abg4509

    Weitere Informationen:
    Ansprechpartner: Professor Dr. Michael Gottfried,
    Physikalische Chemie
    E-Mail: michael.gottfried@chemie.uni-marburg.de
    Tel.: 06421 28-22541


    Images

    In der rastersondenmikroskopischen Aufnahme (Mitte) zeigt das erzeugte Material eine Struktur, die sich mit dem vorhergesagten chemischen Aufbau deckt.
    In der rastersondenmikroskopischen Aufnahme (Mitte) zeigt das erzeugte Material eine Struktur, die s ...
    Graphik: Autoren
    Das Bild darf nur für die Berichterstattung über die zugehörige wissenschaftliche Veröffentlichung verwendet werden.


    Criteria of this press release:
    Journalists
    Chemistry, Materials sciences
    transregional, national
    Research results, Scientific Publications
    German


     

    Help

    Search / advanced search of the idw archives
    Combination of search terms

    You can combine search terms with and, or and/or not, e.g. Philo not logy.

    Brackets

    You can use brackets to separate combinations from each other, e.g. (Philo not logy) or (Psycho and logy).

    Phrases

    Coherent groups of words will be located as complete phrases if you put them into quotation marks, e.g. “Federal Republic of Germany”.

    Selection criteria

    You can also use the advanced search without entering search terms. It will then follow the criteria you have selected (e.g. country or subject area).

    If you have not selected any criteria in a given category, the entire category will be searched (e.g. all subject areas or all countries).