idw - Informationsdienst
Wissenschaft
Durch die Kartierung der Bewegungen von Galaxien in riesigen Filamenten, die das kosmische Netz verbinden, entdeckten Astronomen am Leibniz-Institut für Astrophysik Potsdam (AIP) in Zusammenarbeit mit Wissenschaftlerinnen und Wissenschaftlern in China und Estland, dass sich diese langen Ströme aus Galaxien auf Skalen von Hunderten von Millionen Lichtjahren drehen. Eine Rotation in dieser Größenordnung wurde bisher noch nie beobachtet. Die in Nature Astronomy veröffentlichten Ergebnisse deuten an, dass Drehimpulse auf noch nie dagewesenen Skalen erzeugt werden können.
Kosmische Filamente sind riesige Brücken aus Galaxien und Dunkler Materie, die Galaxienhaufen miteinander verbinden. Sie leiten Galaxien zu und in große Galaxienhaufen, die sich an ihren Enden befinden. „Indem wir die Bewegung von Galaxien in diesen riesigen kosmischen Autobahnen mit Hilfe des Sloan Digital Sky Survey – einer Himmelsdurchmusterung zur Vermessung von Hunderttausenden von Galaxien – untersuchten, fanden wir eine bemerkenswerte Eigenschaft dieser Filamente: Sie drehen sich“, sagt Peng Wang, Erstautor der jetzt veröffentlichten Studie und Astronom am AIP. „Obwohl es sich um dünne Zylinder – ähnlich der Form eines Bleistifts – handelt, die Hunderte von Millionen Lichtjahren lang sind, aber nur wenige Millionen Lichtjahre im Durchmesser, drehen sich diese fantastischen Materieströme“, ergänzt Noam Libeskind, Initiator des Projekts am AIP. „Auf diesen Skalen wirken die Galaxien in ihnen wie Staubkörnchen. Sie bewegen sich auf helix- oder korkenzieherartigen Bahnen, rotieren um die Achse des Filaments, während sie sich in ihm in Längsrichtung bewegen. Eine solche Drehung wurde noch nie zuvor auf solch enormen Skalen beobachtet und impliziert, dass es einen noch unbekannten dafür verantwortlichen physikalischen Mechanismus gibt.“
Wie der für die Rotation verantwortliche Drehimpuls entsteht, ist eines der ungelösten Schlüsselprobleme der Kosmologie. Im Standardmodell der Strukturbildung im Universum wachsen kleine „Überdichten“, die im frühen Universum vorhanden sind, durch gravitative Instabilität, da Materie von unter- zu überdichten Regionen fließt. In der Theorie ist eine solche Strömung drehungs- oder wirbelfrei: Da es keine ursprüngliche Rotation im frühen Universum gibt, muss diese bei der Bildung von Strukturen erzeugt werden. Das kosmische Netz im Allgemeinen und Filamente im Besonderen sind eng mit der Entstehung und Entwicklung von Galaxien verbunden. Sie haben zudem einen starken Einfluss auf den Spin, die Eigenrotation, von Galaxien und regulieren oft die Richtung, in der Galaxien und ihre Halos aus Dunkler Materie rotieren. Es ist jedoch nicht bekannt, ob nach dem derzeitigen Modell der Strukturbildung die Filamente selbst, als nicht kollabierte quasi-lineare Objekte, sich drehen.
„Angeregt durch die Vermutung des Theoretikers Dr. Mark Neyrinck, dass Filamente sich drehen könnten, untersuchten wir die beobachtete Galaxienverteilung im Hinblick auf Filamentrotation“, sagt Noam Libeskind. „Es ist fantastisch, die Bestätigung dafür zu sehen, dass intergalaktische Filamente sowohl im realen Universum als auch in Computersimulationen rotieren.“ Mit Hilfe einer ausgeklügelten Kartierungsmethode segmentierten sie die beobachtete Galaxienverteilung in ihre zugrunde liegende Filamentstruktur und betrachteten jedes Filament näherungsweise als einen langgestreckten Zylinder. Die Galaxien darin unterteilten sie in zwei Bereiche entlang der Achse des Filaments und ermittelten sorgfältig die mittlere Rotverschiebungsdifferenz zwischen den beiden Regionen. Die mittlere Rotverschiebungsdifferenz gibt Aufschluss über die Geschwindigkeitsdifferenz (die Dopplerverschiebung) zwischen den Galaxien auf der sich von uns weg rotierenden und der in unsere Richtung rotierenden Seite der Röhre des Filaments. Somit ist die Bestimmung der Rotation des Filaments möglich. Die Studie impliziert, dass Filamente im Universum je nach Beobachtungswinkel und der Masse der sich an ihren Endpunkten befindlichen Galaxienhaufen ein deutliches Signal zeigen, das auf eine Rotationsbewegung schließen lässt.
Dr. Peng Wang, 0331 7499 233, pwang@aip.de
Dr. Noam Libeskind, 0331 7499 641, nlibeskind@aip.de
Wang, P., Libeskind, N.I., Tempel, E. et al. Possible observational evidence for cosmic filament spin. Nat Astron (2021).
https://www.nature.com/articles/s41550-021-01380-6
http://arxiv.org/abs/2106.05989
https://www.aip.de/de/news/discovery-of-the-largest-rotation-in-the-universe
Künstlerische Darstellung der kosmischen Filamente: Riesige Brücken aus Galaxien und dunkler Materie ...
AIP/ A. Khalatyan/ J. Fohlmeister
Criteria of this press release:
Journalists, Scientists and scholars, all interested persons
Physics / astronomy
transregional, national
Research results, Scientific Publications
German
You can combine search terms with and, or and/or not, e.g. Philo not logy.
You can use brackets to separate combinations from each other, e.g. (Philo not logy) or (Psycho and logy).
Coherent groups of words will be located as complete phrases if you put them into quotation marks, e.g. “Federal Republic of Germany”.
You can also use the advanced search without entering search terms. It will then follow the criteria you have selected (e.g. country or subject area).
If you have not selected any criteria in a given category, the entire category will be searched (e.g. all subject areas or all countries).