idw – Informationsdienst Wissenschaft

Nachrichten, Termine, Experten

Grafik: idw-Logo
Grafik: idw-Logo

idw - Informationsdienst
Wissenschaft

Science Video Project
idw-Abo

idw-News App:

AppStore

Google Play Store



Instance:
Share on: 
06/22/2021 17:23

Dipeptides to the rescue - How small molecules help plants cope with stress

Dipl. Ing. agr. Ursula Ross-Stitt Büro für Presse- und Öffentlichkeitsarbeit
Max-Planck-Institut für Molekulare Pflanzenphysiologie

    A team of scientists led by Dr. Aleksandra Skirycz, until recently a group leader at the Max Planck Institute of Molecular Plant Physiology, now a professor at the Boyce Thompson Institute (BTI) in the USA, has investigated and described in a recent study a novel regulatory small molecule that improves plant tolerance to environmental stress (Moreno et al., 2021, EMBO Journal).

    Stress in plants and their consequences
    Related to their sessile nature plants are exposed to multiple environmental stresses. The source of the stress can be biotic such as microbes and insects. The source of stress can be also abiotic, for instance high and low temperatures (e.g., cold and warm environments), drought, light intensity, nutrient deficiencies, or salinized soils. In plants, stress leads to impaired growth and affects reproductive ability. In agriculture, stress causes crop yield losses and quality reductions. With increasing climate change, the influence of abiotic stress factors on plants will become more severe. Therefore, it is important to investigate and understand how plants respond to stress and how stress-related negative effects on plants can be minimized or prevented.
    A common consequence of stress, whether it is biotic or abiotic, is the accumulation of reactive oxygen species (ROS). ROS radicals react with other molecules in the cells including membranes, nucleic acids and proteins and by doing so impair their function and cause considerable, and often irreversible damage. Living organisms developed numerous mechanisms to counteract ROS. Plants, for instance, accumulate a variety of compounds such as carotenoids and flavonoids that scavenge and in that was “disarm” ROS. A different small-molecule compounds that is essential for maintaining healthy levels of ROS in both plants and animals is a cofactor nicotinamide adenine dinucleotide phosphate (NADPH). Strategies that boost NADPH levels improve stress resistance and extend health- and lifespan.

    Novel Mechanism in response to different stresses
    Prof. Aleksandra Skirycz and her team have now succeeded in describing a novel mechanism, by which plants stimulate NADPH production in response to the different stresses. This mechanism entails yet another small-molecule compound, a dipeptide Tyr-Asp. Tyr-Asp works by modulating plant carbon metabolism, in a way that glucose, a universal building block, is shifted towards production of NADPH. Specifically, Tyr-Asp interferes with glucose metabolism by inhibiting a key glycolytic enzyme, glyceraldehyde-3-phosphate dehydrogenase (GAPC), thereby redirecting glucose toward the pentose phosphate pathway (PPP) and NADPH synthesis. Consistent with the molecular data, Tyr-Asp improved plant resistance toward oxidative and salt stresses.
    "The small molecule we were able to identify is the dipeptide Tyr-Asp, which acts as a metabolic regulator that succeeds in increasing the NADPH/NADPH+ ratio by diverting the glycolytic flux, thereby improving the stress resistance of plants", Dr. Skirycz describes her research findings. Dipeptides are products of protein degradation, composed of two amino-acids linked by a peptide bond. However, the different dipeptides have been long-known for their health-promoting activities in animals, their mode of action remained anecdotal. “Our work laid the foundation for understanding the evolutionary conservation of dipeptides’ role in regulating metabolism and their potential to improve plant and animal health” explain Dr. Aleksandra Skirycz and Dr. Juan C. Moreno, the first author of the study.


    Contact for scientific information:

    Prof. Dr. Aleksandra Skirycz
    Max Planck Institute of Molecular Plant Physiology
    skirycz@mpimp-golm.mpg.de


    Original publication:

    Juan C. Moreno, Bruno E. Rojas, Rubén Vicente, Michal Gorka, Timon Matz, Monika Kosmacz, Juan S. Peralta-Ariza, Youjun Zhang, Saleh Alseekh, Dorothee Childs, Marcin Luzarowski, Zoran Nikoloski, Raz Zarivach, Dirk Walther, Matías D. Hartman, Carlos M. Figueroa, Alberto A. Iglesias, Alisdair R. Fernie, Aleksandra Skirycz
    Tyr-Asp inhibition of glyceraldehyde 3-phosphate dehydrogenase affects plant redox metabolism. EMBO Journal, June 22, 2021 https://www.embopress.org/doi/10.15252/embj.2020106800


    More information:

    https://www.mpimp-golm.mpg.de/2641183/news_publication_17077221_transferred?c=62...


    Images

    Salt and catechin treatments in tobacco seedlings. Those seedlings with Tyr-Asp that have been subjected to stress treatment have grown better than those without Tyr-Asp.
    Salt and catechin treatments in tobacco seedlings. Those seedlings with Tyr-Asp that have been subje ...

    Juan C. Moreno


    Criteria of this press release:
    Journalists
    Biology, Environment / ecology
    transregional, national
    Research results
    English


     

    Help

    Search / advanced search of the idw archives
    Combination of search terms

    You can combine search terms with and, or and/or not, e.g. Philo not logy.

    Brackets

    You can use brackets to separate combinations from each other, e.g. (Philo not logy) or (Psycho and logy).

    Phrases

    Coherent groups of words will be located as complete phrases if you put them into quotation marks, e.g. “Federal Republic of Germany”.

    Selection criteria

    You can also use the advanced search without entering search terms. It will then follow the criteria you have selected (e.g. country or subject area).

    If you have not selected any criteria in a given category, the entire category will be searched (e.g. all subject areas or all countries).