idw – Informationsdienst Wissenschaft

Nachrichten, Termine, Experten

Grafik: idw-Logo
Grafik: idw-Logo

idw - Informationsdienst
Wissenschaft

Science Video Project
idw-Abo

idw-News App:

AppStore

Google Play Store



Instance:
Share on: 
07/13/2021 13:30

TU Ilmenau startet DFG-Projekt zur Optimierung von Lithium-Ionen-Batterien

Marco Frezzella, Referat Medien- und Öffentlichkeitsarbeit
Technische Universität Ilmenau

    Die Technische Universität Ilmenau startet zum 1. November ein Forschungsprojekt, das es nicht nur ermöglichen wird, Lithium-Ionen-Batterien schneller und effizienter zu laden, sondern auch für eine längere Lebensdauer und eine kostengünstigere Herstellung der Batterien sorgt. Das Forscherteam der TU Ilmenau um Prof. Andreas Bund wird zusammen mit Wissenschaftlern der Universität Marburg erforschen, wie eine Schicht aus Zersetzungsprodukten, die sich während des Batteriebetriebs bildet, in kleinstem Maßstab so positiv beeinflusst werden kann, dass sie Ionen leiten kann und die Materialien sich auch bei hohen Spannungen nicht zersetzen.

    Das auf drei Jahre angesetzte Forschungsprojekt wird von der Deutschen Forschungsgemeinschaft mit 324.000 Euro gefördert.

    Wird dieser Artikel gerade auf einem Laptop oder einem Smartphone gelesen, stellt dafür wahrscheinlich eine Lithium-Ionen-Batterie die nötige elektrische Energie zur Verfügung. Lithium-Ionen-Batterien sind so erfolgreich, weil sie große Mengen an Energie bei hohen Spannungen speichern können – bei derart hohen Spannungen, dass diese Batterien eigentlich gar nicht stabil sein dürften. Warum Lithium-Ionen-Batterien dennoch funktionieren und wie dieses Wissen Batterien verbessern kann, damit beschäftigt sich das neue Forschungsprojekt „Untersuchung der Transporteigenschaften sowie der Bildungs- und Wachstumsmechanismen der Festelektrolyt-Interphase (SEI) auf Kohlenstoff-Modellelektroden“ der TU Ilmenau.

    Seit Beginn der 1990er Jahre sind wiederaufladbare Lithium-Ionen-Batterien auf dem Markt. Während andere Batterien üblicherweise Spannungen von ein bis zwei Volt aufweisen, liegt die Spannung von Lithium-Ionen-Batterien bei vier Volt – was besonders in den Anfangszeiten der Lithium-Ionen-Batterien zu Problemen geführt hat: Viele Materialien, insbesondere die seinerzeit zur Verfügung stehenden Batterieelektrolyten, die in Batterien benötigt werden, um Ionen zu transportieren, zersetzen sich bei solch hohen Zellspannungen.

    Mit einer speziellen Mischung aus verschiedenen Carbonaten gelang es Wissenschaftlern in den Folgejahren, Elektrolyte herzustellen, die ungleich länger stabil blieben. So wies zum Beispiel eine Mischung aus Ethylencarbonat und Dimethylcarbonat sehr positive Eigenschaften auf. Ersetzte man jedoch das Ethylencarbonat mit dem chemisch sehr ähnlichen Propylencarbonat, erhielt man sehr schlechte Batterien, die schon nach wenigen Lade- und Entladevorgängen versagten. Damals war völlig unklar, weshalb eine solch kleine Änderung bei der Verwendung eines Materials einen so großen Einfluss auf die Batterie hatte.

    Erst Jahre später fanden Forscher die Antwort. Verwendet man die „falschen“ Carbonate, sind diese bei hohen Zellspannungen nicht stabil, sondern zersetzen sich kontinuierlich weiter, bis die Batterie versagt. Bei der richtigen Wahl an Carbonaten hingegen bilden die Zersetzungsprodukte eine stabile, nur wenige Nanometer dünne Schicht, die den Elektrolyten vor weiterer Zersetzung schützt.

    Doch die Schicht muss auch in der Lage sein, Lithium-Ionen zu transportieren, andernfalls würde der Ladungsträgertransport in der Zelle zusammenbrechen und die Batterie keine Energie mehr liefern. Wie diese sogenannte Passivierungsschicht beschaffen sein muss, damit sie sowohl zuverlässig passiviert, also den Elektrolyten vor weiterer Zersetzung schützt, als auch gleichzeitig Ionen leiten kann, das erforschen die TU Ilmenau und die Universität Marburg drei Jahre lang in dem neuen Forschungsprojekt. Dazu beobachten die Forscher mit verschiedenen In-situ-Methoden, teilweise im Nanometerbereich, also in kleinstem Maßstab, wie sich die Schicht bildet, wie Pfade für die Ionenleitung entstehen und wie die Schichtbildung verbessert werden kann. Prof. Andreas Bund, Leiter des Fachgebiets Elektrochemie und Galvanotechnik, weiß, dass der Einfluss dieser Grenzschicht auf die Batterie, obwohl sie nur extrem dünn ist, enorm ist: „Eine Optimierung der Ionenleitfähigkeit, der Bildungsgeschwindigkeit und des Passivierungsverhalten würde dazu führen, dass künftige Lithium-Ionen-Batterien nicht nur schneller und effizienter geladen werden können, sondern auch länger halten und kostengünstiger sind. Ich bin optimistisch, dass wir das schaffen.“


    Contact for scientific information:

    Prof. Andreas Bund
    Leiter Fachgebiet Elektrochemie und
    Galvanotechnik
    Tel.: +49 3677 69-3102
    Mail: andreas.bund@tu-ilmenau.de


    Images

    Foto: AnLi Fotografie
    Foto: AnLi Fotografie

    Grafik: iStockphoto-Who_I_am
    Grafik: iStockphoto-Who_I_am


    Criteria of this press release:
    Journalists
    Energy, Materials sciences
    transregional, national
    Research projects
    German


     

    Help

    Search / advanced search of the idw archives
    Combination of search terms

    You can combine search terms with and, or and/or not, e.g. Philo not logy.

    Brackets

    You can use brackets to separate combinations from each other, e.g. (Philo not logy) or (Psycho and logy).

    Phrases

    Coherent groups of words will be located as complete phrases if you put them into quotation marks, e.g. “Federal Republic of Germany”.

    Selection criteria

    You can also use the advanced search without entering search terms. It will then follow the criteria you have selected (e.g. country or subject area).

    If you have not selected any criteria in a given category, the entire category will be searched (e.g. all subject areas or all countries).