idw – Informationsdienst Wissenschaft

Nachrichten, Termine, Experten

Grafik: idw-Logo
Grafik: idw-Logo

idw - Informationsdienst
Wissenschaft

Science Video Project
idw-Abo

idw-News App:

AppStore

Google Play Store



Instance:
Share on: 
07/21/2021 12:11

Hochtemperatur-Supraleitung verstehen - mit ultratiefen Temperaturen

Dr. Florian Aigner PR und Marketing
Technische Universität Wien

    Eine überraschende Entdeckung an der TU Wien könnte helfen, das Rätsel der Hochtemperatur-Supraleitung zu lösen: Ein berühmtes „Strange Metal“ stellte sich als Supraleiter heraus.

    Bei tiefen Temperaturen verlieren bestimmte Materialien ihren elektrischen Widerstand und können Strom völlig verlustfrei leiten – dieses Phänomen, die Supraleitung, ist zwar schon seit 1911 bekannt, doch bis heute ist es nicht vollständig verstanden. Und das ist schade, denn ein Material, das auch bei hohen Temperaturen immer noch supraleitende Eigenschaften hätte, würde wohl eine technologische Revolution auslösen.

    An der TU Wien gelang nun eine Entdeckung, die ein wichtiger Schritt in diese Richtung sein könnte: Ein Festkörperphysik-Forschungsteam untersuchte ein ungewöhnliches Material – ein sogenanntes „Strange Metal“ aus Ytterbium, Rhodium und Silizium. Strange Metals zeigen einen ungewöhnlichen Zusammenhang zwischen elektrischem Widerstand und Temperatur. Bei diesem Material ist dieser Zusammenhang in einem besonders großen Temperaturbereich zu sehen, und der zugrundeliegende Mechanismus ist bekannt. Entgegen bisheriger Annahmen stellte sich nun heraus, dass dieses Material außerdem ein Supraleiter ist und die Supraleitung eng mit dem Strange-Metal-Verhalten in Verbindung steht. Das könnte der Schlüssel zum Verständnis von Hochtemperatur-Supraleitung auch in anderen Materialklassen sein.

    Strange Metal: linearer Zusammenhang von Widerstand und Temperatur

    Bei gewöhnlichen Metallen steigt der elektrische Widerstand bei tiefen Temperaturen mit dem Quadrat der Temperatur. Bei manchen Hochtemperatur-Supraleitern ist die Situation aber völlig anders: Bei tiefen Temperaturen, unterhalb der sogenannten supraleitenden Sprungtemperatur, zeigen sie überhaupt keinen elektrischen Widerstand, und oberhalb dieser Temperatur steigt der Widerstand linear statt quadratisch mit der Temperatur. Man spricht in diesem Fall von „Strange Metals“ – von „seltsamen Metallen“.

    „Man hat daher in den letzten Jahren bereits vermutet, dass dieser lineare Zusammenhang zwischen Widerstand und Temperatur eine ganz wichtige Bedeutung für die Supraleitung hat“, sagt Prof. Silke Bühler-Paschen, die am Institut für Festkörperphysik der TU Wien den Forschungsbereich „Quantum Materials“ leitet. „Doch leider kannte man bisher kein geeignetes Material, um das wirklich gut untersuchen zu können.“ Bei Hochtemperatur-Supraleitern ist der lineare Zusammenhang zwischen Temperatur und Widerstand meist nur in einem relativ kleinen Temperaturbereich nachweisbar und außerdem können verschiedene komplizierte Effekte, die bei höheren Temperaturen unweigerlich auftreten, diesen Zusammenhang auf komplizierte Weise beeinflussen.

    Viele Experimente wurden mit einem exotischen Material (YbRh2Si2) durchgeführt, in dem das Strange-Metal-Verhalten in einem extrem weiten Temperaturbereich sichtbar ist – doch erstaunlicherweise schien gerade aus diesem extremen „Strange Metal“-Zustand heraus keine Supraleitung zu entstehen. „Es gab bereits theoretische Überlegungen, um zu begründen, warum Supraleitung hier einfach nicht möglich ist“, sagt Silke Bühler-Paschen. „Wir beschlossen trotzdem, uns dieses Material noch einmal näher anzusehen.“

    Rekordverdächtige Kälte

    An der TU Wien steht ein besonders leistungsfähiges Tieftemperaturlabor zur Verfügung. „Dort können wir Materialien bei extremeren Bedingungen untersuchen als das anderen Forschungsgruppen bisher möglich war“, erklärt Silke Bühler-Paschen. So konnte man zunächst zeigen, dass in YbRh2Si2 der lineare Zusammenhang zwischen Widerstand und Temperatur sogar in einem noch größeren Temperaturbereich gegeben ist als bisher gedacht – und dann gelang die entscheidende Entdeckung: Bei extrem tiefen Temperaturen von nur einem Millikelvin wird aus dem Strange Metal ein Supraleiter.

    „Damit ist unser Material optimal geeignet, um herauszufinden, auf welche Weise das Strange-Metal-Verhalten zur Supraleitung führt“, sagt Silke Bühler-Paschen.
    Paradoxerweise sorgt gerade die Tatsache, dass das Material erst bei sehr tiefen Temperaturen supraleitend wird, dafür, dass sich damit Hochtemperatur-Supraleitung besonders gut erforschen lässt: „Die Mechanismen, die zu Supraleitung führen, sind bei diesen extrem niedrigen Temperaturen besonders gut sichtbar, weil sie dort nicht von anderen Effekten überlagert werden. In unserem Material ist dies die Lokalisierung eines Teils der Leitungselektronen an einem quantenkritischen Punkt. Es erscheint wahrscheinlich, dass derselbe Mechanismus auch für das Verhalten von Hochtemperatur-Supraleitern wie den berühmten Cupraten verantwortlich ist“, sagt Silke Bühler-Paschen.


    Contact for scientific information:

    Prof. Silke Bühler-Paschen
    Institut für Festkörperphysik
    Technische Universität Wien
    +43-1-58801-13716
    silke.buehler-paschen@tuwien.ac.at


    Original publication:

    D.H. Nguyen et al., Superconductivity in an extreme strange metal, Nature Communications (2021) https://doi.org/10.1038/s41467-021-24670-z


    Images

    Kristallstruktur des "Strange Metal"-Supraleiters YbRh2Si2 und Teilansicht des Kernentmagnetisierungs-Kryostats, in dem die Messungen durchgeführt wurden
    Kristallstruktur des "Strange Metal"-Supraleiters YbRh2Si2 und Teilansicht des Kernentmagnetisierung ...
    TU Wien
    TU Wien


    Criteria of this press release:
    Journalists, all interested persons
    Physics / astronomy
    transregional, national
    Research results, Scientific Publications
    German


     

    Help

    Search / advanced search of the idw archives
    Combination of search terms

    You can combine search terms with and, or and/or not, e.g. Philo not logy.

    Brackets

    You can use brackets to separate combinations from each other, e.g. (Philo not logy) or (Psycho and logy).

    Phrases

    Coherent groups of words will be located as complete phrases if you put them into quotation marks, e.g. “Federal Republic of Germany”.

    Selection criteria

    You can also use the advanced search without entering search terms. It will then follow the criteria you have selected (e.g. country or subject area).

    If you have not selected any criteria in a given category, the entire category will be searched (e.g. all subject areas or all countries).