idw – Informationsdienst Wissenschaft

Nachrichten, Termine, Experten

Grafik: idw-Logo
Grafik: idw-Logo

idw - Informationsdienst
Wissenschaft

Science Video Project
idw-Abo

idw-News App:

AppStore

Google Play Store



Instance:
Share on: 
09/17/2021 09:00

Tröpfchen mit Coronaviren halten länger als gedacht

Dr. Florian Aigner PR und Marketing
Technische Universität Wien

    Winzige, mit Viren beladene Tröpfchen verschwinden nach dem Ausatmen langsamer als bisherige Modelle vermuten ließen. Experimente und Simulationen der TU Wien können das nun erklären.

    Im Winter steckt man sich leichter an als im Sommer – das gilt für die Corona-Pandemie, für Influenza und für andere virale Erkrankungen. Eine wesentliche Rolle spielt dabei die relative Luftfeuchtigkeit. Sie ist im Winter draußen viel höher als im Sommer, man erkennt das etwa daran, dass unser Atem an der kalten Luft zu Tröpfchen kondensiert.
    Bisherige Modelle gingen davon aus, dass nur große Tröpfchen eine relevante Ansteckungsgefahr mit sich bringen, weil kleine Tröpfchen schnell verdunsten. An der TU Wien konnte man nun allerdings in Zusammenarbeit mit der Universität Padua zeigen, dass das nicht stimmt: Durch die hohe Feuchtigkeit der Atemluft können auch kleine Tröpfchen viel länger in der Luft bleiben als bisher angenommen. Die Studie wurde im Fachjournal PNAS publiziert.

    Simulationen und Experimente mit Dummy-Kopf

    Prof. Alfredo Soldati und sein Team am Institut für Strömungsmechanik und Wärmeübertragung der TU Wien beschäftigen sich mit Strömungen, die aus unterschiedlichen Komponenten zusammengesetzt sind – man spricht von „Mehrphasenströmungen“. Dazu zählt auch die Luft, die ein infizierter Mensch beim Niesen ausatmet: Die infektiösen Viren befinden sich in Flüssigkeitströpfchen unterschiedlicher Größe, dazwischen befindet sich Gas.
    Diese Mischung führt zu einem relativ komplizierten Strömungsverhalten: Sowohl Tröpfchen als auch Gas bewegen sich, beide Komponenten beeinflussen einander, und die Tröpfchen können dabei verdunsten und selbst zum Gas werden. Um diesen Effekten auf den Grund zu gehen, wurden an der TU Wien Computersimulationen entwickelt, in denen man die Ausbreitung von Tröpfchen und Atemluft bei unterschiedlichen Umgebungsparametern berechnen kann, etwa bei unterschiedlicher Temperatur und Luftfeuchtigkeit.

    Zusätzlich führte man Experimente durch: In einen Kopf aus Kunststoff wurde eine Düse mit einem elektromagnetisch gesteuerten Ventil eingebaut, um auf präzise definierte Weise ein Gemisch aus Tröpfchen und Gas zu versprühen. Mit Hochgeschwindigkeitskameras wurde der Vorgang aufgezeichnet, so konnte man genau messen, welche Tröpfchen wie lange in der Luft bleiben. An dem Forschungsprojekt beteiligt war außerdem das Team von Francesco Picano an der Universität Padua.

    Die feuchte Atemluft lässt Tröpfchen länger schweben

    „Wir haben festgestellt, dass kleine Tröpfchen eine Größenordnung länger in der Luft bleiben als man bisher gedacht hatte“, sagt Alfredo Soldati. „Das hat einen simplen Grund: Für die Verdunstungsrate der Tröpfchen ist nicht die durchschnittliche relative Luftfeuchtigkeit der Umgebung entscheidend, sondern die lokale Feuchtigkeit direkt am Aufenthaltsort des Tröpfchens.“ Die ausgeatmete Luft ist viel feuchter als die Umgebungsluft, und diese ausgeatmete Feuchtigkeit führt dazu, dass kleine Tröpfchen langsamer verdunsten. Wenn die ersten Tröpfchen verdunsten, führt das lokal wieder zu einer höheren Feuchtigkeit, wodurch der weitere Verdunstungsprozess anderer Tröpfchen weiter gebremst wird.

    „Das heißt zwar, dass kleine Tröpfchen länger infektiös sind als angenommen, aber das soll kein Grund für Pessimismus sein“, meint Alfredo Soldati. „Es zeigt uns nur, dass man solche Phänomene eben auf die korrekte Weise studieren muss, um sie zu verstehen. Nur dann können wir wissenschaftlich solide Empfehlungen machen, etwa in Bezug auf Masken und Sicherheitsabstände.“


    Contact for scientific information:

    Prof. Alfredo Soldati
    Institut für Strömungsmechanik und Wärmeübertragung
    Technische Universität Wien
    +43 1 58801 32213
    alfredo.soldati@tuwien.ac.at


    Original publication:

    J. Wang et al., Short-range exposure to airborne virus transmission and current guidelines, PNAS 118 (37), 2021.
    https://www.pnas.org/content/118/37/e2105279118/tab-figures-data


    Images

    Computersimulationen zeigen, wie lange sich kleine Tröpfchen in der Luft halten können.
    Computersimulationen zeigen, wie lange sich kleine Tröpfchen in der Luft halten können.
    TU Wien
    TU Wien

    Experimente mit Plastikkopf
    Experimente mit Plastikkopf
    TU Wien
    TU Wien


    Criteria of this press release:
    Journalists, all interested persons
    Biology, Mechanical engineering, Medicine
    transregional, national
    Research results, Scientific Publications
    German


     

    Help

    Search / advanced search of the idw archives
    Combination of search terms

    You can combine search terms with and, or and/or not, e.g. Philo not logy.

    Brackets

    You can use brackets to separate combinations from each other, e.g. (Philo not logy) or (Psycho and logy).

    Phrases

    Coherent groups of words will be located as complete phrases if you put them into quotation marks, e.g. “Federal Republic of Germany”.

    Selection criteria

    You can also use the advanced search without entering search terms. It will then follow the criteria you have selected (e.g. country or subject area).

    If you have not selected any criteria in a given category, the entire category will be searched (e.g. all subject areas or all countries).