idw – Informationsdienst Wissenschaft

Nachrichten, Termine, Experten

Grafik: idw-Logo
Grafik: idw-Logo

idw - Informationsdienst
Wissenschaft

Science Video Project
idw-Abo

idw-News App:

AppStore

Google Play Store



Instance:
Share on: 
09/17/2021 20:23

Local supply chains in neurons: who gets the goods?

Dr. Irina Epstein Press and Public Relations
Max-Planck-Institut für Hirnforschung

    To store and process information, the brain is constantly producing, distributing and degrading proteins, the essential cellular resources. Proteins are in high demand, especially at synapses (specialized connections between neurons) which, on average, consume over 100000 trillion proteins per day in the brain. Scientists at the Max Planck Institute for Brain Research, Max Planck Florida Institute and Goethe University Frankfurt now pictured a tight spatial relationship between the protein production machinery and product in neurons at unprecedented resolution. Their findings imply local sharing of resources: a local ‘neighborhood’ of synapses.

    Neurons constantly process information from thousands of synapses. Numerous synapses populate large volumes of dendrites (information receiving processes) ranging up to hundreds of microns away from the cell body, the cell’s ‘governing’ unit. Thus, unlike in other (round) cells, the distribution of goods (proteins) poses a particular “logistic challenge” to neurons.

    Local hotspots of protein synthesis

    “Instead of using just one central source (the cell body) which would be quite inefficient given the large neuronal volume, neurons have adapted a local solution. They deploy ribosomes, the protein synthesis machinery as well as messenger RNAs (mRNAs), the templates for protein synthesis to “local hubs”, serving distal populations of synapses”, says Prof. Erin Schuman, director at the Max Planck Institute for Brain Research.

    While local protein synthesis is required for various mechanisms of synaptic plasticity - a prerequisite for learning and memory - the abundance and distribution of ribosomes and nascent proteins near synapses has not been well understood. To shed light on this phenomenon, Schuman and colleagues detected ribosomes and their nascent-proteins products at unprecedented resolution using DNA-PAINT and metabolic labelling in combination with super-resolution microscopy.

    We detected ribosomes near ~85% of synapses, with on average two sites of protein production per synapse. Surprisingly, nearly half of the nascent protein products were distributed in the vicinity of synapses, suggesting local protein production is widespread near synapses even under basal conditions”, explains Chao Sun, the postdoc in the Schuman lab who led the work.

    Synaptic neighborhoods share local supplies

    How much protein does each synapse get and do synaptic clusters share supplies? To study the dynamics of local protein distribution across neighboring synapses during spontaneous neural activity, the scientists stimulated neurons both globally and locally with high spatial precision. “Synaptic activity turned out to be a good predictor of local protein supply levels”, Sun says. “Interestingly, however, while the global protein distribution across the neuron was homogenous, neighboring synapses often have very heterogenous levels of protein supply. And this local difference persists during both global and local synaptic plasticity.”

    Schuman: “This logistic scheme may be a good solution for maintaining homeostasis of the entire synapse population while allowing local diversity. Understanding the relationship and dynamics between the resource and protein product will allow us to further dissect the mechanisms of synaptic plasticity.”


    Contact for scientific information:

    Prof. Dr. Erin Schuman
    Director
    Max Planck Institute for Brain Research
    Frankfurt am Main
    +49 69 850033-1001
    erin.schuman@brain.mpg.de


    Original publication:

    Chao Sun, Andreas Nold, Claudia M. Fusco, Vidhya Rangaraju, Tatjana Tchumatchenko, Mike Heilemann, and Erin M. Schuman. The Prevalence and Specificity of Local Protein Synthesis During Neuronal Synaptic Plasticity. Science Advances. (2021) https://www.science.org/doi/10.1126/sciadv.abj0790


    More information:

    https://brain.mpg.de/480589/local-supply-chains-in-neurons


    Images

    Biological compartments can function with autonomy by localizing cell biological organelles and machinery. In neurons, ribosomes, the protein synthesis factories, are localized near 85% of synapses, supplying synaptic neighborhoods with nascent proteins.
    Biological compartments can function with autonomy by localizing cell biological organelles and mach ...

    Max Planck Institute for Brain Research / J. Kuhl

    The landscape of neuronal protein production (heatmap) and distribution (contour map) resembles a regional rain/weather map (left).Visualization of newly-synthesized proteins at single-molecule resolution (right).
    The landscape of neuronal protein production (heatmap) and distribution (contour map) resembles a re ...

    Max Planck Institute for Brain Research / C. Sun. Modified from Sun et al. 2021.


    Criteria of this press release:
    Journalists, Scientists and scholars, Students, Teachers and pupils
    Biology, Chemistry, Medicine
    transregional, national
    Research results, Scientific Publications
    English


     

    Help

    Search / advanced search of the idw archives
    Combination of search terms

    You can combine search terms with and, or and/or not, e.g. Philo not logy.

    Brackets

    You can use brackets to separate combinations from each other, e.g. (Philo not logy) or (Psycho and logy).

    Phrases

    Coherent groups of words will be located as complete phrases if you put them into quotation marks, e.g. “Federal Republic of Germany”.

    Selection criteria

    You can also use the advanced search without entering search terms. It will then follow the criteria you have selected (e.g. country or subject area).

    If you have not selected any criteria in a given category, the entire category will be searched (e.g. all subject areas or all countries).