idw – Informationsdienst Wissenschaft

Nachrichten, Termine, Experten

Grafik: idw-Logo
Grafik: idw-Logo

idw - Informationsdienst
Wissenschaft

Science Video Project
idw-Abo

idw-News App:

AppStore

Google Play Store



Instance:
Share on: 
10/07/2021 15:04

Künstliche Intelligenz ermöglicht Drohnen den Flug ins Unbekannte

Melanie Nyfeler Kommunikation
Universität Zürich

    Forschende der Universität Zürich haben einen neuen Ansatz entwickelt, mit dem autonome Quadrocopter mit hoher Geschwindigkeit durch unbekannte, unübersichtliche Umgebungen fliegen können. Dies geschieht ausschliesslich mithilfe der Sensoren und Berechnungen an Bord der Drohne. Bei Unfällen, Katastrophen oder auf Baustellen könnte dieses Novum Leben retten.

    Wenn es um die Erkundung komplexer und unbekannter Umgebungen wie Wälder, Gebäude oder Höhlen geht, sind Drohnen kaum zu schlagen. Sie sind schnell, wendig und klein, transportieren Nutzlasten und gelangen mit Sensoren praktisch überall hin. Doch ohne eine Karte können sich autonome Drohnen bisher kaum in einer unbekannten Umgebung zurechtfinden. Um ihr volles Potenzial auszuschöpfen, braucht es derzeit noch erfahrene (menschliche) Piloten.

    «Beim Manövrieren einer Drohne muss man die Umgebung in Sekundenbruchteilen verstehen, um die Drohne schnell auf kollisionsfreie Bahnen zu lenken», sagt Prof. Davide Scaramuzza, der die Robotics and Perception Group an der Universität Zürich leitet. «Dies ist sowohl für Menschen als auch für Maschinen sehr schwierig. Erfahrene Piloten können dieses Niveau nach Jahren andauernden Trainings erreichen. Aber Maschinen tun sich damit noch immer schwer.»

    Der KI-Algorithmus lernt von einem simulierten Experten, in der realen Welt zu fliegen

    In einer aktuellen Studie haben Scaramuzza und sein Team einen autonomen Quadrocopter darauf trainiert, mit Geschwindigkeiten bis zu 40 Stundenkilometer durch bisher unbekannte Umgebungen wie Wälder, Gebäude, Ruinen oder Züge zu fliegen, ohne mit Bäumen, Mauern oder anderen Hindernissen zu kollidieren. Dabei stützt sich die Drohne nur auf die eingebauten Kameras und die Berechnungen des Quadrocopters.

    Das neuronale Netz der Drohne - sozusagen ihr Gehirn - lernt das Umfliegen von Hindernissen, indem es eine Art «simulierten Lehrer» beobachtete: einen Algorithmus, der eine computergestützte Drohne durch eine simulierte Umgebung voller komplexer Hindernisse flog. Der Algorithmus war jederzeit über die Position des Quadrotors und die Messwerte seiner Sensoren informiert und verfügte über genügend Zeit und Rechenleistung, um in Sekundenbruchteilen die beste Flugbahn zu errechnen.

    Dieser «simulierte Lehrer» kann zwar nicht ausserhalb der Simulation eingesetzt werden, aber seine Daten werden verwendet, um dem neuronalen Netz beizubringen, wie es aufgrund der von den Sensoren übermittelten Daten die beste Flugbahn vorhersagen kann. Dies ist ein grosser Vorteil gegenüber bestehenden Systemen, die zunächst anhand von Sensordaten eine Karte der Umgebung erstellen und dann innerhalb dieser Karte Flugbahnen planen – zwei Schritte, die viel Zeit in Anspruch nehmen und es fast unmöglich machen, mit hoher Geschwindigkeit zu fliegen.

    Keine exakte Nachbildung der realen Welt erforderlich

    Nach dem Training in der Simulation wurde das System direkt im Freien eingesetzt, wo eine autonome Drohne in verschiedenen Umgebungen ohne Kollisionen mit Geschwindigkeiten von bis zu 40 Stundenkilometer fliegen konnte. «Während Menschen Jahre für das Training benötigen, kann künstliche Intelligenz mit Hilfe von Hochleistungssimulatoren viel schneller, quasi über Nacht, vergleichbare Navigationsfähigkeiten erreichen», sagt Antonio Loquercio, Doktorand und Mitautor der Arbeit. «Interessanterweise müssen diese Simulatoren keine exakte Nachbildung der realen Welt sein. Mit dem richtigen Ansatz reichen sogar einfache Simulationen aus», fügt Elia Kaufmann hinzu, ebenfalls Doktorand und Co-Autor.

    Die Anwendungen des Systems sind nicht nur auf Quadrocopter beschränkt: Gemäss den Forschenden könnte derselbe Ansatz nützlich sein, um etwa die Leistung von autonomen Autos zu verbessern oder sogar KI-Systeme in Bereichen zu trainieren, in denen das Sammeln von Daten schwierig bis unmöglich ist.

    In einem nächsten Schritt sollen das System verbessert und schnellere Sensoren entwickelt werden, die in kürzerer Zeit mehr Umgebungsinformationen liefern, damit die Drohne auch bei Geschwindigkeiten über 40 Stundenkilometern sicher fliegt.

    Multimedia Material
    YouTube: https://youtu.be/m89bNn6RFoQ
    High resolution photos and videos:
    https://tinyurl.com/2rvez93d


    Contact for scientific information:

    Prof. Dr. Davide Scaramuzza
    Robotics and Perception Group
    Department of Informatics
    University of Zurich
    Phone +41 44 635 24 09
    E-mail: sdavide@ifi.uzh.ch

    Antonio Loquercio
    Robotics and Perception Group
    Department of Informatics
    University of Zurich
    Phone +41 44 635 43 73
    E-mail: loquercio@ifi.uzh.ch

    Elia Kaufmann
    Robotics and Perception Group
    Institut für Informatik
    Universität Zürich
    Tel. +41 44 635 43 73
    E-Mail: ekaufmann@ifi.uzh.ch


    Original publication:

    Literatur:
    Antonio Loquercio, Elia Kaufmann, René Ranftl, Matthias Müller, Vladlen Koltun, Davide Scaramuzza, Learning High-speed Flight in the Wild, Science Robotics, October 6, 2021
    DOI: 10.1126/scirobotics.abg5810


    More information:

    https://www.media.uzh.ch/de/medienmitteilungen/2021/Drohne-in-der-Natur.html


    Images

    Auch bei unwirtlichen Bedingungen findet die Drohne autonom ihren Weg. (Bild: UZH)
    Auch bei unwirtlichen Bedingungen findet die Drohne autonom ihren Weg. (Bild: UZH)

    UZH


    Criteria of this press release:
    Journalists
    Electrical engineering, Information technology, Mathematics, Social studies, Traffic / transport
    transregional, national
    Research projects, Research results
    German


     

    Help

    Search / advanced search of the idw archives
    Combination of search terms

    You can combine search terms with and, or and/or not, e.g. Philo not logy.

    Brackets

    You can use brackets to separate combinations from each other, e.g. (Philo not logy) or (Psycho and logy).

    Phrases

    Coherent groups of words will be located as complete phrases if you put them into quotation marks, e.g. “Federal Republic of Germany”.

    Selection criteria

    You can also use the advanced search without entering search terms. It will then follow the criteria you have selected (e.g. country or subject area).

    If you have not selected any criteria in a given category, the entire category will be searched (e.g. all subject areas or all countries).