idw – Informationsdienst Wissenschaft

Nachrichten, Termine, Experten

Grafik: idw-Logo
Grafik: idw-Logo

idw - Informationsdienst
Wissenschaft

Science Video Project
idw-Abo

idw-News App:

AppStore

Google Play Store



Instance:
Share on: 
10/25/2021 15:49

How the "thermostat" in the brain measures impending overheating

Julia Bird Unternehmenskommunikation
Universitätsklinikum Heidelberg

    Researchers at Heidelberg University Hospital currently describe in "Neuron" where heat-sensitive neurons in the brain obtain the necessary information / "Outsourced" sensor proteins allow adapted thermoregulation

    The mechanisms by which the body measures temperature and regulates its own body heat are vital, but still poorly understood. The discovery of the first heat sensor on nerve cells in the skin, for which the U.S. molecular biologist David Julius received this year's Nobel Prize for Medicine, was therefore pioneering. However, a very similar heat sensor, the protein TRPM2, is active not only in the skin, but also in the brain , as scientists from the Pharmacological Institute at Heidelberg University Hospital have already discovered. Now they have further elucidated the mechanism surrounding the sensor protein TRPM2 in mice and published their findings in the scientific journal "Neuron". They showed: TRPM2 is "outsourced". It does not sit on the heat-sensitive neurons themselves, but is distributed more widely at the contact sites of neighboring neurons. This means - technically speaking - more adjustment options on the body's own thermostat.

    "Placing the heat sensors at the sites of signal transmission between the nerve cells, the synapses, allows fine-tuning of thermoregulation," explains research group leader Prof. Jan Siemens, PhD, who spent four years conducting research in Nobel Prize winner Julius' lab at the University of California, San Francisco. Synapses are wafer-thin, widely ramified cell extensions through which nerve cells make contact with their neighbors and transmit signals from one cell to another. In the hypothalamus, the brain region that acts as a thermostat, when the temperature rises, TRPM2 on the surface of these synapses itself triggers a signal to the heat-sensitive nerve cells, as the scientists discovered to their surprise in experiments with cells from this brain region.

    Surprisingly, TRPM2 plays no role inside the neurons that are actually heat-sensitive. "Whether heat-sensitive neurons pass on the signal to cool down and with what urgency probably results from the sum of all incoming activating and inhibitory signals from the network," Siemens surmises. "This is because, for example, signals on energy balance or hormone status, which also have an influence on thermoregulation, arrive simultaneously and are offset against each other." Thanks to the outsourced heat sensors, it is not the limited number of heat-sensitive neurons that determines heat sensitivity, but the entire network of surrounding neurons. This makes thermoregulation more adaptable to individual needs, he said.

    Molecular processes of thermoregulation still poorly understood

    If the temperature in the brain exceeds a value that is still healthy for the body, the hypothalamus, or more precisely its preoptic region, gives the signal to cool down. If the current body temperature deviates from the set point, which can differ slightly from species to species, the body initiates appropriate countermeasures. In 2016, the team led by Prof. Siemens found the first heat sensor in the form of the protein TRPM2, which enables the body's own thermostat to detect impending overheating at all: TRPM2 causes calcium to flood into the synapses in mice from around 39 degrees Celsius, as it probably does in humans, and sets a signaling chain in motion that ultimately leads to the body dissipating heat, for example through dilated blood vessels in the skin. The exact processes are still poorly understood. The findings from Heidelberg are helping to elucidate the mechanisms piece by piece.


    Contact for scientific information:

    Prof. Dr. Jan Siemens
    Pharmakologisches Institut Heidelberg
    Im Neuenheimer Feld 366
    69120 Heidelberg
    E-Mail: jan.siemens@pharma.uni-heidelberg.de


    Original publication:

    Kamm GB, Boffi JC, Zuza K, et al. A synaptic temperature sensor for body cooling. Neuron 2021 109, 3283–3297 
    https://doi.org/10.1016/j.neuron.2021.10.001


    More information:

    http://siemenslab.de/
    http://www.medizinische-fakultaet-hd.uni-heidelberg.de/Siemens.102639.0.html


    Images

    Prof. Dr. Jan Siemens, Pharmakologisches Institut Heidelberg. Copyright: Universitätsklinikum Heidelberg
    Prof. Dr. Jan Siemens, Pharmakologisches Institut Heidelberg. Copyright: Universitätsklinikum Heidel ...


    Criteria of this press release:
    Business and commerce, Journalists, Scientists and scholars, Students, Teachers and pupils, all interested persons
    Medicine
    transregional, national
    Research results
    English


     

    Help

    Search / advanced search of the idw archives
    Combination of search terms

    You can combine search terms with and, or and/or not, e.g. Philo not logy.

    Brackets

    You can use brackets to separate combinations from each other, e.g. (Philo not logy) or (Psycho and logy).

    Phrases

    Coherent groups of words will be located as complete phrases if you put them into quotation marks, e.g. “Federal Republic of Germany”.

    Selection criteria

    You can also use the advanced search without entering search terms. It will then follow the criteria you have selected (e.g. country or subject area).

    If you have not selected any criteria in a given category, the entire category will be searched (e.g. all subject areas or all countries).