idw – Informationsdienst Wissenschaft

Nachrichten, Termine, Experten

Grafik: idw-Logo
Grafik: idw-Logo

idw - Informationsdienst
Wissenschaft

Science Video Project
idw-Abo

idw-News App:

AppStore

Google Play Store



Instance:
Share on: 
11/03/2021 15:09

Recurrent lockdowns are not necessary for pandemic control

Dr. Manuel Maidorn Presse- und Öffentlichkeitsarbeit
Max-Planck-Institut für Dynamik und Selbstorganisation

    A new study in Science Advances analyses the mitigation of infectious disease outbreaks. It shows that recurrent strict lockdowns are not necessary for long-term control of pandemics – as long as moderate precautionary measures are sustained. The researchers from the Max Planck Institute for Dynamics and Self-Organization (MPIDS) investigated which measures are required under which conditions to avoid strict lockdowns. They conclude that individual behavior ultimately determines if pandemic control can be maintained.

    Together with his colleagues, Sebastian Contreras from the MPIDS studied the control of disease spread via so-called non-pharmaceutical interventions. Those include mandatory governmental measures and voluntary actions, such as physical distancing, everyday habits, and face masks. The scientists found a stable regime at low case numbers, where freedom is maximized without the need for recurrent lockdowns. Yet, a critical factor in maintaining this freedom is the continuation of a fast and efficient 'test-trace-and-isolate' system.

    Test-trace-and-isolate has been proven very effective for breaking infection chains

    During the COVID-19 pandemic, test-trace-and-isolate strongly contributed to contain disease spread; by following the close contacts of infected individuals, infection chains can be broken. However, this approach can only be effective if it is timely and when case numbers are within the finite tracing capacity of health authorities. The researchers found that testing and contact tracing can stabilize COVID-19 incidence at low values while requiring fewer measures to protect the population's health. Yet, this stability is conditional to the measures in place (both voluntary and governmental) and the contact tracing capacity of health authorities; it is a matter of balance (as illustrated in Figure 1).

    "Making an analogy, the test-trace-and-isolate system that can stop infection chains in COVID-19 resembles firefighters who can stop wildfires. In both cases, it is much easier to contain the outbreaks locally while it is still small. Once the outbreak got out of control, the test-trace-isolate becomes too slow and unspecific; one has to reinstate strong population-scale measures and, in parallel, try to protect the vulnerable," says Viola Priesemann, who coordinated the study. "Vaccination and other voluntary measures to prevent contagion will further facilitate control, acting as a very convenient rain in our analogy of fire," Sebastian Contreras adds.

    The model reflects the pandemic development in the recent past

    Besides the new mathematical evidence presented by the researchers, there are real-world examples of their findings following the winter COVID-19 wave in 2020 (shown in Figure 2). Nonetheless, the results are general and apply to arbitrary infectious diseases, not restricted only to the COVID-19 pandemic. Therefore, they will allow policymakers to plan effective response strategies in the future. As the next step in their research, the authors aim to analyze the factors behind adherence and compliance to the measures by studying the interplay between disease and information spread.


    Original publication:

    https://www.science.org/doi/10.1126/sciadv.abg2243


    Images

    Figure 1: Stability at low case numbers: a matter of balance. Spreading dynamics depend on the balance between destabilizing and stabilizing contributions and on the level of case numbers.
    Figure 1: Stability at low case numbers: a matter of balance. Spreading dynamics depend on the balan ...

    MPIDS / Priesemann

    Figure 2: Examples of balance and unbalance based on historic infection data. Strategies of countries to fight SARS-CoV-2 differ widely and are reflected in case numbers.
    Figure 2: Examples of balance and unbalance based on historic infection data. Strategies of countrie ...

    MPIDS / Priesemann


    Criteria of this press release:
    Journalists, Scientists and scholars, all interested persons
    Biology, Medicine, Physics / astronomy
    transregional, national
    Research results
    English


     

    Help

    Search / advanced search of the idw archives
    Combination of search terms

    You can combine search terms with and, or and/or not, e.g. Philo not logy.

    Brackets

    You can use brackets to separate combinations from each other, e.g. (Philo not logy) or (Psycho and logy).

    Phrases

    Coherent groups of words will be located as complete phrases if you put them into quotation marks, e.g. “Federal Republic of Germany”.

    Selection criteria

    You can also use the advanced search without entering search terms. It will then follow the criteria you have selected (e.g. country or subject area).

    If you have not selected any criteria in a given category, the entire category will be searched (e.g. all subject areas or all countries).