idw – Informationsdienst Wissenschaft

Nachrichten, Termine, Experten

Grafik: idw-Logo
Grafik: idw-Logo

idw - Informationsdienst
Wissenschaft

Science Video Project
idw-Abo

idw-News App:

AppStore

Google Play Store



Instance:
Share on: 
11/22/2021 10:40

Spin Mixing in Ferromagnets Revealed

Press Officer: Elin Bäckström, Uppsala University, elin.backstrom@uu.se Kommunikationsavdelningen / Communications Department
Schwedischer Forschungsrat - The Swedish Research Council

    For the first time through experiments and theory, Uppsala researchers, together with international collaborators, have been able to measure spin mixing in a ferromagnetic material. Through the experimental measurements, they discovered that a common factor in spin equations, in common use since the 1950s, has been significantly underestimated.

    In addition to the well known electric charge, electrons have a magnetic moment, also called spin. The spin can in a simplified way be described as the micro-level equivalent to the macro-level bar magnet, which has a north pole and a south pole. An important phenomenon in quantum mechanics is that the spin can have more than one value at the same time, a so called spin mixing, which is in sharp contrast to classical mechanics. One may compare this with the thought experiment Schrödinger’s cat, which is both alive and dead at the same time until one makes an investigation.

    “Spin mixing is a bridge which makes it possible for the spin to quickly switch direction and might be important for future spin electronics. You want a low spin mixing when the spin should be unchanged, when the spin is used as bearer of information. Instead you want a high spin mixing when you quickly want to affect the spin, as for example in the case of ultra-fast demagnetisation of a material,” says Ronny Knut, researcher at the Department of Physics and Astronomy.

    The mixing of different states of the spin in a material may be estimated from calculations, but there has until now been no good experimental method to measure this effect.

    What the Uppsala researchers have discovered is that equations from the 50s, which today are used to describe how spin behave in a microwave field, have underestimated the importance of spin mixing and that a correctly matched equation instead may be used for measurements of this.

    The researchers have arrived to the results by using two different measurement methods that have given different results, Ferromagnetic resonance (FMR) carried out at NIST in Boulder and X-ray magnetic circular dichroism (XMCD), carried out at the synchrotron BESSY II in Berlin. The answer to the differences between the both measurement methods has been derived from the factor in the theoretical model that has previously been disregarded. Now it has been realised that it still plays a role and that the difference between FMR and XMCD is directly related to the spin mixing.

    “This work will make possible methodical studies of spin mixing, which will carry the development of spin electronics forward,” says Ronny Knut.

    The equation developed by the physicist Charles Kittel is one of the most well-known relationships used within modern magnetism and is the basis of thousands of publications of magnetic phenomena. When Kittel derived his equation he chose to disregard a contribution which he assumed had no practical significance at the time. The disregarded contribution is an extension of Kittel’s original application of the laws of quantum physics, which assumes that the behavior of electrons and their spins are described by wave functions that follow strict quantum mechanical rules.

    Uppsala University has contributed with both experiment (Ronny Knut and Olof Karis) and theory (Yaroslav Kvashnin, Erna K. Delczeg-Czirjak and Olle Eriksson). The research has been carried out in a collaboration with researchers from NIST in Boulder (USA), The University of South Florida in Florida (USA), Örebro University, Trinity College in Dublin (Ireland) and Helmholz-Zentrum Berlin (Germany).


    Contact for scientific information:

    Further information:

    Ronny Knut, Researcher in X-ray Photon Science, at Department of Physics and Astronomy, Uppsala University, email: ronny.knut@physics.uu.se, phone: +46-18-471 3603, mobile: +46 70-364 52 43

    Olof Karis, Professor in X-ray Photon Science, at Department of Physics and Astronomy, Uppsala University, email: prefekt@physics.uu.se, phone: +46-70-425 03 29


    Original publication:

    Article reference: Shaw, J. M., Quantifying Spin-Mixed States in Ferromagnets, Physical Review Letters 127, 207201 (2021) doi:


    More information:

    https://physics.aps.org/articles/v14/156
    https://doi.org/10.1103/PhysRevLett.127.207201
    https://resources.mynewsdesk.com/image/upload/t_next_gen_article_large_767/tnunz...


    Images

    Criteria of this press release:
    Journalists
    Chemistry, Physics / astronomy
    transregional, national
    Research results
    English


     

    Help

    Search / advanced search of the idw archives
    Combination of search terms

    You can combine search terms with and, or and/or not, e.g. Philo not logy.

    Brackets

    You can use brackets to separate combinations from each other, e.g. (Philo not logy) or (Psycho and logy).

    Phrases

    Coherent groups of words will be located as complete phrases if you put them into quotation marks, e.g. “Federal Republic of Germany”.

    Selection criteria

    You can also use the advanced search without entering search terms. It will then follow the criteria you have selected (e.g. country or subject area).

    If you have not selected any criteria in a given category, the entire category will be searched (e.g. all subject areas or all countries).