idw – Informationsdienst Wissenschaft

Nachrichten, Termine, Experten

Grafik: idw-Logo
Grafik: idw-Logo

idw - Informationsdienst
Wissenschaft

Science Video Project
idw-Abo

idw-News App:

AppStore

Google Play Store



Instance:
Share on: 
01/04/2022 14:27

"Magic" combination for more effective hydrogenations – paper by chemists from Rostock and Olomouc in NATURE CATALYSIS

Regine Rachow Pressestelle
Leibniz-Institut für Katalyse

    Hydrogen (H2) is the smallest chemical molecule and a beacon of hope for a more environmentally friendly energy transition in the coming years. In addition, it is already used in a variety of industrial processes - so-called hydrogenations - for the environmentally friendly production of chemical products. For hydrogen to be used both for energy production and in hydrogenations, it is necessary to selectively activate the relatively stable hydrogen-hydrogen bond and allow it to react further. These molecular processes require catalysts, which are usually based on expensive and comparatively rare precious metals such as platinum, palladium or rhodium.

    In a research collaboration between the Leibniz Institute for Catalysis (LIKAT) in Rostock, Germany and the Regional Centre of Advanced Technologies and Materials (RCPTM) at Palacký University Olomouc in the Czech Republic, it has now been possible to develop significantly simpler catalyst materials based on inexpensive iron and silicon dioxide (sand), which can be used to carry out various hydrogenation reactions, for the production of intermediates for pesticides, active pharmaceutical ingredients as well as plastics, much more efficiently.

    To this end, Vishwas Chandrashekhar, a doctoral student in the group of Prof. Matthias Beller and Prof. Jagadeesh Rajenahally at LIKAT, has produced a large number of nanostructured iron-based catalysts that only develop their actual activity in the presence of cheap aluminum compounds. The activity of this “magic” combination came as a real surprise. Czech scientists led by Prof. Radek Zboril at the renowned RCPTM subsequently succeeded in systematically characterizing the novel materials using state-of-the-art analytical techniques.

    The optimal iron catalyst with the technical designation Fe/Fe-O@SiO2 is a well-defined nanostructured material that has a so-called fayalite structure at the interface between silicon dioxide and iron. Fayalite is a rare, naturally occurring iron silicate mineral. Another special feature of the developed catalyst is α-Fe nanoparticles at this interface. These nanoparticles are surrounded by an ultrathin amorphous iron(III) oxide layer, in other words "rust", which virtually grows out of the silica structure.

    The scientists from Rostock and Olomouc believe that their work will have a significant impact on global efforts to find low-cost hydrogenation catalysts, and that it will open new doors for using iron-based nanostructured catalysts in other challenging hydrogenations. Their paper has just been published in the journal NATURE CATALYSIS.


    Contact for scientific information:

    Prof. Dr. Jagadeesh Rajenahally
    E-Mail: Jagadeesh.Rajenahally@catalysis.de, Phone: +49(381)1281-210


    Original publication:

    Vishwas G. Chandrashekhar, Thirusangumurugan Senthamarai, Ravishankar G. Kadam, Ondřej Malina, Josef Kašlík, Radek Zbořil, Manoj B. Gawande, Rajenahally V. Jagadeesh & Matthias Beller, Nature Catalysis, 2022, https://doi.org/10.1038/s41929-021-00722-x.


    Images

    TEM and HRTEM images of Fe/Fe-O@SiO2 catalyst. Upper row: distribution of Fe-nanoparticles. Middle: Fe/FeO core-shell structured nanoparticle. Bottom: Elemental [iron(Fe), silica (Si) and oxygen (O)] mapping.
    TEM and HRTEM images of Fe/Fe-O@SiO2 catalyst. Upper row: distribution of Fe-nanoparticles. Middle: ...
    Vishwas Chandrashekhar
    LIKAT

    This picture shows the hydrogenation reaction of nitriles (left) to amines (right), autoclave and the structural representation of Fe/Fe-O@SiO2 catalyst (both middle).
    This picture shows the hydrogenation reaction of nitriles (left) to amines (right), autoclave and th ...
    Vishwas Chandrashekhar
    LIKAT


    Criteria of this press release:
    Journalists, Scientists and scholars
    Chemistry, Energy, Environment / ecology
    transregional, national
    Cooperation agreements, Research results
    English


     

    Help

    Search / advanced search of the idw archives
    Combination of search terms

    You can combine search terms with and, or and/or not, e.g. Philo not logy.

    Brackets

    You can use brackets to separate combinations from each other, e.g. (Philo not logy) or (Psycho and logy).

    Phrases

    Coherent groups of words will be located as complete phrases if you put them into quotation marks, e.g. “Federal Republic of Germany”.

    Selection criteria

    You can also use the advanced search without entering search terms. It will then follow the criteria you have selected (e.g. country or subject area).

    If you have not selected any criteria in a given category, the entire category will be searched (e.g. all subject areas or all countries).