idw - Informationsdienst
Wissenschaft
Mit atomarer Auflösung hat ein deutsch-chinesisches Forschungsteam die dreidimensionale Struktur der Oberfläche von Katalysator-Nanopartikeln sichtbar gemacht. Diese spielt eine entscheidende Rolle für die Aktivität und Stabilität der Partikel. Die detaillierten Einblicke gelangen mit einer Kombination aus Atomsondentomografie, Spektroskopie und Elektronenmikroskopie. Nanopartikel-Katalysatoren können zum Beispiel bei der Produktion von Wasserstoff für die chemische Industrie zum Einsatz kommen. Um die Leistung künftiger Katalysatoren zu optimieren, ist es unabdingbar, den Einfluss der dreidimensionalen Struktur zu verstehen.
Für die Arbeiten kooperierten Forschende der Ruhr-Universität Bochum, der Universität Duisburg-Essen und des Max-Planck-Instituts für Chemische Energiekonversion in Mülheim an der Ruhr im Rahmen des Sonderforschungsbereichs „Heterogene Oxidationskatalyse in der Flüssigphase“.
An der RUB arbeitete ein Team um Weikai Xiang und Prof. Dr. Tong Li aus dem Bereich Atomic-scale Characterisation zusammen mit dem Lehrstuhl für Elektrochemie und Nanoskalige Materialien sowie dem Lehrstuhl für Technische Chemie. Außerdem waren Institute im chinesischen Shanghai und britischen Didcot beteiligt. Das Team beschreibt die Arbeiten in der Zeitschrift Nature Communications, online veröffentlicht am 10. Januar 2022.
Partikel während des Katalyseprozesses beobachtet
Die Forschenden untersuchten zwei verschiedene Arten von Nanopartikeln aus Cobalt-Eisenoxid, die kleiner als zehn Nanometer waren. Sie analysierten die Partikel während der Katalyse der sogenannten Oxygen Evolution Reaction. Dabei handelt es sich um eine Teilreaktion, die während der Wasserstoffproduktion auftritt: Wasserstoff kann durch die Spaltung von Wasser mittels elektrischer Energie gewonnen werden; dabei entstehen Wasserstoff und Sauerstoff. Der Flaschenhals bei der Entwicklung effizienterer Produktionsprozesse ist die Teilreaktion, in der Sauerstoff gebildet wird, die Oxygen Evolution Reaction. Denn diese Reaktion verändert die Katalysatoroberfläche und sorgt dafür, dass die Wasserspaltung im Lauf der Zeit ineffizienter wird. Genau diese Veränderungen an der Oberfläche wollen die Forschenden verstehen, weil sie entscheidend für die Aktivität und Stabilität des Katalysators sind.
Gerade für kleine Nanopartikel von weniger als zehn Nanometern Durchmesser fehlten bislang detaillierte Informationen dazu, was an der Katalysatoroberfläche während der Reaktion passiert. Mit der Atomsondentomografie konnte die Gruppe die Verteilung der verschiedenen Atomsorten in den Cobalt-Eisenoxid-Katalysatoren dreidimensional sichtbar machen. In Kombination mit weiteren Methoden zeigten sie, wie sich die Struktur und Zusammensetzung der Oberfläche während des Katalyseprozesses veränderte – und wie diese Veränderung mit der katalytischen Leistung zusammenhing.
„Atomsondentomografie hat großes Potenzial, neue Erkenntnisse auf atomarer Ebene auch bei anderen katalytischen Reaktionen zu ermöglichen, etwa die Erzeugung von Wasserstoff und der Umwandlung von CO2“, resümiert Tong Li.
Förderung
Die Deutsche Forschungsgemeinschaft förderte die Arbeiten im Rahmen des Projekts Projektnummer 407513992 und des Sonderforschungsbereichs/Transregios 247 „Heterogene Oxidationskatalyse in der Flüssigphase“ (Projektnummer 388390466).
Die Universitätsallianz Ruhr
Seit 2007 arbeiten die Ruhr-Universität Bochum, die Technische Universität Dortmund und die Universität Duisburg-Essen unter dem Dach der Universitätsallianz (UA Ruhr) strategisch eng zusammen. Durch Bündelung der Kräfte werden die Leistungen der Partneruniversitäten systematisch ausgebaut. Unter dem Motto „gemeinsam besser“ gibt es inzwischen über 100 Kooperationen in Forschung, Lehre und Verwaltung. Mit mehr als 120.000 Studierenden und nahezu 1.300 Professorinnen und Professoren gehört die UA Ruhr zu den größten und leistungsstärksten Wissenschaftsstandorten Deutschlands.
Prof. Dr. Tong Li
Atomic-scale Characterisation
Institut für Werkstoffe
Fakultät für Maschinenbau
Ruhr-Universität Bochum
Tel.: +49 234 32 26099
E-Mail: tong.li@rub.de
Weikai Xiang et al.: 3D atomic-scale imaging of mixed Co-Fe spinel oxide nanoparticles during oxygen evolution reaction, in: Nature Communications, 2021, DOI: 10.1038/s41467-021-27788-2, https://www.nature.com/articles/s41467-021-27788-2
Criteria of this press release:
Journalists
Materials sciences
transregional, national
Research results, Scientific Publications
German

You can combine search terms with and, or and/or not, e.g. Philo not logy.
You can use brackets to separate combinations from each other, e.g. (Philo not logy) or (Psycho and logy).
Coherent groups of words will be located as complete phrases if you put them into quotation marks, e.g. “Federal Republic of Germany”.
You can also use the advanced search without entering search terms. It will then follow the criteria you have selected (e.g. country or subject area).
If you have not selected any criteria in a given category, the entire category will be searched (e.g. all subject areas or all countries).