idw – Informationsdienst Wissenschaft

Nachrichten, Termine, Experten

Grafik: idw-Logo
Grafik: idw-Logo

idw - Informationsdienst
Wissenschaft

Science Video Project
idw-Abo

idw-News App:

AppStore

Google Play Store



Instance:
Share on: 
02/10/2022 13:51

Mitochondria efficiently adapt to changing metabolic conditions

Rimma Gerenstein Hochschul- und Wissenschaftskommunikation
Albert-Ludwigs-Universität Freiburg im Breisgau

    Freiburg researchers show that two protein complexes can communicate with each other

    A recent study explains an essential component for proper mitochondrial function: The protein complexes MICOS and ATP synthase can communicate with each other. Dr. Heike Rampelt and Prof. Dr. Nikolaus Pfanner at the Institute of Biochemistry and Molecular Biology of the University of Freiburg have uncovered an important mechanism that ensures efficient metabolic adaptation of mitochondria. The research is a collaboration with the groups of Prof. Dr. Martin van der Laan of Saarland University, Prof. Dr. Claudine Kraft of the University of Freiburg and Prof. Dr. Ida van der Klei of the University Groningen / Netherlands and combines biochemical approaches with fluorescence microscopy of living cells as well as electron microscopy to visualize mitochondrial membrane architecture. The study has been published in the journal Cell Reports.

    Cellular respiration of the inner mitochondrial membrane

    Mitochondria, the power plants of the cell, make massive contributions to the energy supply of the body by burning metabolites with the help of oxygen. This cellular respiration takes place in the inner of the two mitochondrial membranes that, in contrast to the outer membrane, is strongly folded. The structure and topology of these membrane folds, the so-called cristae membranes, has profound influence on the efficiency of respiration and is important for many mitochondrial functions. For this reason, cristae architecture is controlled precisely and adapted dynamically to changes in cellular metabolism. Defects in these processes result in severe human diseases.

    Communication is key

    Two protein complexes in the inner mitochondrial membrane that are required for a normal membrane architecture are the F1Fo-ATP synthase, an enzyme that also participates in energy conversion, and the MICOS complex (mitochondrial contact site and cristae organizing system). These complexes are regarded as antagonists; they are localized in different areas of the inner membrane and bend the membrane in opposite directions. It was unclear how the functions of these two protein complexes can be coordinated with each other. The team around Rampelt and Pfanner now demonstrate that MICOS and ATP synthase communicate with each other and that this is vital for healthy mitochondrial function. A MICOS subunit, Mic10, travels to the ATP synthase and stabilizes the association of several ATP synthases to large complexes. This new regulatory function of Mic10 is pivotal for efficient metabolic adaptation and respiratory growth. "Communication between the two complexes is likely key to the coordinated biogenesis of the inner mitochondrial membrane", explains Rampelt.

    Heike Rampelt, Nikolaus Pfanner and Claudine Kraft lead research groups at the Institute of Biochemistry and Molecular Biology of the Medical Faculty and perform research in the Excellence Cluster CIBSS of the University Freiburg in the area of biological signalling studies.


    Contact for scientific information:

    Dr. Heike Rampelt
    Institute of Biochemistry and Molecular Biology
    University of Freiburg
    Phone: +49 (0)761 / 203 - 5245
    E-Mail: heike.rampelt@biochemie.uni-freiburg.de


    Original publication:

    Rampelt, H., Wollweber, F., Licheva, M., de Boer, R., Perschil, I., Steidle, L., Becker, T., Bohnert, M., van der Klei, I., Kraft, C., van der Laan, M., Pfanner, N. (2022): Dual role of Mic10 in mitochondrial cristae organization and ATP synthase-linked metabolic adaptation and respiratory growth. In: Cell Reports, 38:110290. DOI: https://doi.org/10.1016/j.celrep.2021.110290


    More information:

    https://www.pr.uni-freiburg.de/pm-en/press-releases-2022/mitochondria-efficientl...


    Images

    Criteria of this press release:
    Journalists
    Biology, Medicine
    transregional, national
    Research results
    English


     

    Help

    Search / advanced search of the idw archives
    Combination of search terms

    You can combine search terms with and, or and/or not, e.g. Philo not logy.

    Brackets

    You can use brackets to separate combinations from each other, e.g. (Philo not logy) or (Psycho and logy).

    Phrases

    Coherent groups of words will be located as complete phrases if you put them into quotation marks, e.g. “Federal Republic of Germany”.

    Selection criteria

    You can also use the advanced search without entering search terms. It will then follow the criteria you have selected (e.g. country or subject area).

    If you have not selected any criteria in a given category, the entire category will be searched (e.g. all subject areas or all countries).