idw – Informationsdienst Wissenschaft

Nachrichten, Termine, Experten

Grafik: idw-Logo
Grafik: idw-Logo

idw - Informationsdienst
Wissenschaft

Science Video Project
idw-Abo

idw-News App:

AppStore

Google Play Store



Instance:
Share on: 
03/28/2022 11:16

Innovative Spatial ALD system at the LZH can precisely coat complex-shaped optics

Lena Bennefeld Kommunikation
Laser Zentrum Hannover e.V.

    With a new Spatial ALD system, the Laser Zentrum Hannover e.V. (LZH) can now also uniformly coat complex-shaped optics. The innovative system achieves higher deposition rates than previously possible - and is of interest, among others, for applications in the automotive lighting or VR/AR sectors.

    ALD (atomic layer deposition) technology can produce very thin, high-quality coatings. So far, the ALD process has been used primarily to produce thin functional layers in the semiconductor industry, for example. The new Spatial ALD system of the LZH, which was developed in cooperation with the company Beneq, now makes another application that is in high demand in industry economically viable. The scientists in the Optics Integration group at the LZH can use it to produce layer systems of uniform thickness much faster than before, for example on strongly curved and structured optics. Previously used methods, such as electron beam evaporation or ion beam sputtering, are severely limited in this respect.

    Exciting use cases: Curved displays or lighting elements

    The Spatial ALD system achieves high deposition rates in the production of ultra-thin coating systems for optics and enables the uniform coating of complexly shaped surfaces. This is of interest, for example, in the fields of automotive lighting or augmented reality (AR)/virtual reality (VR), where three-dimensionally shaped lighting elements are essential. As the system is plasma-based, it can operate with low temperatures below 100 degrees - making it particularly suitable for coating temperature-sensitive polymer optics, which are often used for displays.

    The rotation principle enables high deposition rates

    The system was developed by the Finnish company Beneq, a leader in ALD technology, in collaboration with the LZH. The ALD process is based on self-limiting chemical reactions between gaseous precursors and substrate surfaces. In systems commonly used at present, the process reactions are carried out one after the other, which necessitates a time-consuming gas exchange of the entire reaction chamber. This is different in the Spatial ALD system at the LZH: Here, the process cycles take place spatially separated. The system has four individual process chambers separated by pressure and nitrogen, in each, an ALD reaction step is completed. The substrates then rotate into the next chamber. In this way, the scientists achieve deposition rates that were previously only possible with other coating processes. This makes the process particularly economical and at the same time enables high throughput in optical coating.

    System interesting for research and industrial customers

    The scientists presented their first research results with the new system in a conference contribution at this year's Photonics West. They are also currently working in the EUROSTARS collaborative project INTEGRA to coat optical diffraction gratings using the Spatial ALD system. In addition, the LZH is open to new challenges with the Spatial ALD system in the context of further industry and research collaborations.


    Images

    The plasma-based Spatial ALD system can precisely coat even complex-shaped optics.
    The plasma-based Spatial ALD system can precisely coat even complex-shaped optics.

    Photo: LZH


    Criteria of this press release:
    Journalists, Scientists and scholars
    Mechanical engineering, Physics / astronomy
    transregional, national
    Research projects, Research results
    English


     

    Help

    Search / advanced search of the idw archives
    Combination of search terms

    You can combine search terms with and, or and/or not, e.g. Philo not logy.

    Brackets

    You can use brackets to separate combinations from each other, e.g. (Philo not logy) or (Psycho and logy).

    Phrases

    Coherent groups of words will be located as complete phrases if you put them into quotation marks, e.g. “Federal Republic of Germany”.

    Selection criteria

    You can also use the advanced search without entering search terms. It will then follow the criteria you have selected (e.g. country or subject area).

    If you have not selected any criteria in a given category, the entire category will be searched (e.g. all subject areas or all countries).