idw – Informationsdienst Wissenschaft

Nachrichten, Termine, Experten

Grafik: idw-Logo
Grafik: idw-Logo

idw - Informationsdienst
Wissenschaft

Science Video Project
idw-Abo

idw-News App:

AppStore

Google Play Store



Instance:
Share on: 
04/21/2022 17:00

Microdrones With Light-driven Nanomotors

Lutz Ziegler Presse- und Öffentlichkeitsarbeit
Julius-Maximilians-Universität Würzburg

    Propelling micrometre-sized drones using light only and exerting precise control: Physicists at the University of Würzburg have succeeded at this for the first time. Their microdrones are significantly smaller than red blood cells.

    A hand-held laser pointer produces no noticeable recoil forces when it is "fired" - even though it emits a directed stream of light particles. The reason for this is its very large mass compared to the very small recoil impulses that the light particles cause when leaving the laser pointer.

    However, it has long been clear that optical recoil forces can indeed have a very large effect on correspondingly small particles. For example, the tails of comets point away from the Sun partly due to light pressure. The propulsion of light spacecrafts via light sails has also been discussed repeatedly, most recently in connection with the "star shot" project, in which a fleet of miniature spacecrafts is to be sent to Alpha Centauri.

    Ordinary quadcopter drones as models

    In the journal Nature Nanotechnology, Würzburg physicists led by Professor Bert Hecht (Chair of Experimental Physics 5, Nano-Optics Group) have now shown for the first time that it is possible to not only efficiently propel micrometre-sized objects in an aqueous environment with light, but also control them precisely on a surface with all three degrees of freedom (two translational plus one rotational).

    In doing so, they were inspired by ordinary quadcopter drones, where four independent rotors allow complete control of the movements. Such control possibilities offer completely new options for the usually extremely difficult handling of nano- and micro-objects, for example, for the assembly of nanostructures, for the analysis of surfaces with nanometre precision, or in the field of reproductive medicine.

    Polymer discs with up to four light-driven nanomotors

    The Würzburg microdrones consist of a transparent polymer disc measuring 2.5 micrometres in diameter. Up to four independently addressable nanomotors made of gold are embedded in this disc.

    "These motors are based on optical antennas developed in Würzburg, – that is, tiny metallic structures with dimensions less than the wavelength of light," says Xiaofei Wu, a postdoc in the Hecht research group. "These antennas were specifically optimised for receiving circularly polarised light. This allows the motors to receive the light regardless of the orientation of the drone, which is crucial for applicability. In a further step, the received light energy is then emitted by the motor in a specific direction to generate optical recoil force, which depends on the sense of rotation of the polarisation (clockwise or counterclockwise) and on either of two different wavelengths of light."

    It was only with this idea that the researchers were able to control their microdrones efficiently and precisely. Due to the very small mass of the drones, extreme accelerations can be achieved.

    The development of the microdrones was challenging. It started back in 2016 with a research grant by the VW Foundation dedicated to risky projects. (https://www.uni-wuerzburg.de/aktuelles/einblick/single/news/nano-drohnen-mit-lic...)

    Precise fabrication based on single-crystal gold

    The extremely precise fabrication of the nanomotors is crucial for the function of the microdrones. The use of accelerated Helium ions as a means to cut nanostructures from monocrystalline gold has turned out to be a game changer. In further steps, the drone body is produced using electron beam lithography. Finally, the drones must be detached from the substrate and brought into solution.

    In further experiments, a feedback loop is being implemented to automatically correct external influences on the microdrones to control them more precisely. Furthermore, the research team strives to complete the control options so that the height of the drones above the surface can also be controlled. And of course, another goal is to attach functional tools to the microdrones.


    Contact for scientific information:

    Prof. Dr. Bert Hecht, Experimental Physics 5, University of Würzburg, T + 49 931 31-85863, hecht@physik.uni-wuerzburg.de


    Original publication:

    Light-driven Microdrones, Nature Nanotechnology, 21 April 2022, DOI: 10.1038/s41565-022-01099-z


    Images

    Artistic representation of a microdrone with two active light-driven nanomotors controlled between red blood cells.
    Artistic representation of a microdrone with two active light-driven nanomotors controlled between r ...
    Thorsten Feichtner
    Uni Würzburg

    Size comparison between quadrocopter and microdrone.
    Size comparison between quadrocopter and microdrone.
    Xiaofei Wu
    Uni Würzburg


    Criteria of this press release:
    Journalists, Scientists and scholars, Students
    Electrical engineering, Physics / astronomy
    transregional, national
    Research results, Scientific Publications
    English


     

    Help

    Search / advanced search of the idw archives
    Combination of search terms

    You can combine search terms with and, or and/or not, e.g. Philo not logy.

    Brackets

    You can use brackets to separate combinations from each other, e.g. (Philo not logy) or (Psycho and logy).

    Phrases

    Coherent groups of words will be located as complete phrases if you put them into quotation marks, e.g. “Federal Republic of Germany”.

    Selection criteria

    You can also use the advanced search without entering search terms. It will then follow the criteria you have selected (e.g. country or subject area).

    If you have not selected any criteria in a given category, the entire category will be searched (e.g. all subject areas or all countries).