idw – Informationsdienst Wissenschaft

Nachrichten, Termine, Experten

Grafik: idw-Logo
Grafik: idw-Logo

idw - Informationsdienst
Wissenschaft

Science Video Project
idw-Abo

idw-News App:

AppStore

Google Play Store



Instance:
Share on: 
06/03/2022 13:34

A novel path for sustainable photon upconversion with non-precious metals

Petra Giegerich Kommunikation und Presse
Johannes Gutenberg-Universität Mainz

    Scientists in Mainz and Berlin use chromium for efficient green-to-blue photon upconversion

    Sustainable chemical applications need to be able to employ renewable energy sources, renewable raw materials, and earth-abundant elements. However, to date many techniques have only been possible with the use of expensive precious metals or rare earth metals, the extraction of which can have serious environmental impacts. A team of researchers including Professor Katja Heinze and Professor Christoph Kerzig of Johannes Gutenberg University Mainz (JGU) as well as Dr. Ute Resch-Genger of the German Bundesanstalt für Materialforschung und -prüfung (BAM) has now achieved a breakthrough in the use of chromium, an abundant base metal which Heinze's group has been investigating for some time. The new findings show that chromium compounds, also called molecular rubies, can substitute expensive precious metals in photon upconversion. Photon upconversion (UC) is a process in which the sequential absorption of two photons of lower energy leads to the emission of one photon of higher energy. This higher energy photon can in principle be employed to expand the use of low-energy sunlight in solar cells or photochemical reactions which otherwise require UV light for activation. The use of molecular rubies can thus help to reduce the impact of environmentally damaging processes such as mining of precious metals or rare earth elements and to expand photochemistry to more sustainable processes.

    Chromium compounds as a promising alternative

    Most photochemical and photophysical applications such as phosphorescent organic light-emitting diodes, dye-sensitized solar cells, or light-driven chemical reactions use precious metals such as gold, platinum, ruthenium, iridium, or rare earth metals. However, precious metals are expensive because they are scarce while rare earth elements are only mined in a few countries, in China in particular. Furthermore, their extraction often involves considerable consumption of water, energy, and chemicals. In some cases, such as gold mining, highly toxic substances such as cyanide or mercury are employed.

    On the other hand, resources of the metal chromium, which gets its name from the ancient Greek word for color, are 10,000 times more plentiful in the Earth's crust than those of platinum and 100,000 times greater than those of iridium, meaning that it is available in sufficient quantities. "Unfortunately, the photophysical properties of abundant metals like chromium or iron are just not good enough to be useful in technological applications, especially when it comes to the lifetimes and energies of their electronically excited states," explained Professor Katja Heinze of JGU's Department of Chemistry. A significant progress in this regard has been made only in the last few years, with Heinze's team being one of the main contributors. They were also involved in the development of so-called molecular rubies. These are soluble molecular compounds which possess exceptionally good excited state characteristics. Molecular rubies have already been used as molecular optical thermometers and pressure sensors.

    Direct observation of the energy transfer processes thanks to new large-scale laser device

    The team of scientists from Mainz and Berlin has now achieved yet another breakthrough. "In the process, we observed a novel mechanism and understood the high efficiency of the new chromium compounds in detail," said Professor Christoph Kerzig. The scientists managed to directly observe the unusual energy transfer pathway using a laser setup recently installed in the Kerzig group. This so-called laser flash photolysis technique allowed them to detect all intermediates that are important for the upconversion mechanisms. Furthermore, quantitative laser experiments established the absence of inherent energy loss channels and side reactions, which lays the grounds for efficient applications of this underexplored way to transfer and convert solar energy with chromium compounds.

    Consequently, scientists may be able to develop new light-driven reactions using the common metal chromium in the future instead of using the rare, more costly ruthenium and iridium compounds, which today are still the most frequently used. "Together with our partners at BAM in Berlin and other universities we will continue to push on with our efforts to develop a more sustainable photochemistry," emphasized Professor Katja Heinze.

    The group's results have been published in Angewandte Chemie, classified as a Hot Paper. The German Research Foundation (DFG) and the Chemical Industry Funds are funding this research. In 2018, the German Research Foundation set up the priority program Light Controlled Reactivity of Metal Complexes (SPP 2102), coordinated by Professor Katja Heinze with the second funding period having started in 2022.

    Image:
    https://download.uni-mainz.de/presse/09_chemie_aufwaertskonversion.jpg
    Green-to-blue light upconversion in a solution with a molecular ruby
    photo/©: Yi You

    Related links:
    https://www.spp2102.uni-mainz.de/ – DFG Priority Program 2021: "Light-controlled reactivity of metal complexes" ;
    https://susinnoscience.uni-mainz.de/ – SusInnoScience Top-level Research Area of JGU

    Read more:
    https://www.uni-mainz.de/presse/aktuell/14806_ENG_HTML.php – press release "Johannes Gutenberg University Mainz continues coordination of DFG Priority Program in photochemistry in the second funding period" (15 Dec. 2021) ;
    https://www.uni-mainz.de/presse/aktuell/10621_ENG_HTML.php – press release "Scientists in Mainz develop a more sustainable photochemistry" (14 Jan. 2020) ;
    https://www.uni-mainz.de/presse/aktuell/5655_ENG_HTML.php – press release "Scientists develop highly sensitive molecular optical pressure sensor" (5 July 2018) ;
    https://www.uni-mainz.de/presse/aktuell/2351_ENG_HTML.php – press release "Mainz-based researchers stabilized gold in very rare oxidation state +II" (8 Aug. 2017) ;
    https://www.uni-mainz.de/presse/aktuell/1802_ENG_HTML.php – press release "Scientists develop molecular thermometer for contactless measurement using infrared light" (14 June 2017) ;
    https://www.uni-mainz.de/presse/aktuell/1212_ENG_HTML.php – press release "Johannes Gutenberg University Mainz to coordinate new DFG priority program in photochemistry" (25 Apr. 2017) ;
    https://www.uni-mainz.de/presse/17824_ENG_HTML.php – press release "Katja Heinze receives research award for intelligent food packaging with freshness indicator" (5 Dec. 2014)


    Contact for scientific information:

    Professor Dr. Katja Heinze
    Department of Chemistry
    Johannes Gutenberg University Mainz
    55099 Mainz, GERMANY
    phone: +49 6131 39-25886
    e-mail: katja.heinze@uni-mainz.de
    https://www.ak-heinze.chemie.uni-mainz.de/

    Junior Professor Dr. Christoph Kerzig
    Department of Chemistry
    Johannes Gutenberg University Mainz
    55099 Mainz, GERMANY
    phone: +49 6131 39-22479
    e-mail: ckerzig@uni-mainz.de
    https://www.ak-kerzig.chemie.uni-mainz.de/


    Original publication:

    C. Wang et al., Efficient Triplet-Triplet Annihilation Upconversion Sensitized by a Chromium(III) Complex via an Underexplored Energy Transfer Mechanism, Angewandte Chemie International Edition, 28 March 2022
    DOI: 10.1002/anie.202202238
    https://onlinelibrary.wiley.com/doi/full/10.1002/anie.202202238


    Images

    Criteria of this press release:
    Journalists, Scientists and scholars, all interested persons
    Chemistry, Energy, Environment / ecology, Materials sciences, Physics / astronomy
    transregional, national
    Research results, Scientific Publications
    English


     

    Help

    Search / advanced search of the idw archives
    Combination of search terms

    You can combine search terms with and, or and/or not, e.g. Philo not logy.

    Brackets

    You can use brackets to separate combinations from each other, e.g. (Philo not logy) or (Psycho and logy).

    Phrases

    Coherent groups of words will be located as complete phrases if you put them into quotation marks, e.g. “Federal Republic of Germany”.

    Selection criteria

    You can also use the advanced search without entering search terms. It will then follow the criteria you have selected (e.g. country or subject area).

    If you have not selected any criteria in a given category, the entire category will be searched (e.g. all subject areas or all countries).