idw – Informationsdienst Wissenschaft

Nachrichten, Termine, Experten

Grafik: idw-Logo
Grafik: idw-Logo

idw - Informationsdienst
Wissenschaft

Science Video Project
idw-Abo

idw-News App:

AppStore

Google Play Store



Instance:
Share on: 
06/22/2022 18:50

Tiefenaufgelöste Messung ultraschneller Magnetisierungsdynamik

Alexandra Wettstein Presse- und Öffentlichkeitsarbeit
Max-Born-Institut für Nichtlineare Optik und Kurzzeitspektroskopie im Forschungsverbund Berlin e.V.

    Die zukünftige Entwicklung funktionaler magnetischer Bauelemente, die auf ultraschneller optischer Spinmanipulation basieren, erfordert ein Verständnis der tiefenabhängigen Spindynamik an den Grenzflächen komplexer magnetischer Heterostrukturen. Am Max-Born-Institut in Berlin wurde nun eine neuartige Methode vorgestellt, die eine solche tiefen- und zeitaufgelöste Untersuchung der Magnetisierung ermöglicht. Mithilfe breitbandiger Femtosekunden-Röntgenpulse konnte damit die transiente Entstehung von Magnetisierungsprofilen innerhalb eines magnetischen Dünnschichtsystems verfolgt werden.

    In der heutigen Informationstechnik bestehen funktionale magnetische Bauelemente in der Regel aus Stapeln dünner Schichten magnetischer und nichtmagnetischer Materialien, die jeweils nur etwa einen Nanometer dick sind. Der Aufbau des Schichtsystems, die Auswahl der Atomarten und die sich daraus ergebenden Grenzflächen zwischen den einzelnen Schichten sind entscheidend für die Funktion des Bauteils, wie auch beispielsweise in den Leseköpfen aller magnetischen Festplatten, die auf dem Riesenmagnetowiderstand (GMR-Effekt) basieren. In den letzten Jahren wurde gezeigt, dass ultrakurze Laserimpulse bis hinab in den Femtosekundenbereich (eine Femtosekunde = 10-15 s) die Magnetisierung eines Materials effektiv und sehr schnell beeinflussen können, wodurch der Magnetisierungszustand vorübergehend geändert oder sogar dauerhaft umgeschaltet werden kann. Während diese Effekte bisher vor allem in einfachen Modellsystemen untersucht wurden, erfordern künftige Anwendungen ein Verständnis der Magnetisierungsdynamik auch in komplexeren Strukturen mit Heterogenität auf der Nanometerskala.

    ForscherInnen des Max-Born-Instituts in Berlin haben nun gemeinsam mit KollegInnen der Leibniz-Institute für Kristallzüchtung und für Analytische Wissenschaften sowie des Helmholtz-Zentrums Berlin eine neuartige Methode vorgestellt, welche es erlaubt, die räumliche und zeitliche Entwicklung laserinduzierter Spindynamik innerhalb einer komplexen magnetischen Heterostruktur auf Femto- und Pikosekundenzeitskalen aufzulösen. Mithilfe ultrakurzer weicher Röntgenpulse einer Wellenlänge von etwa acht Nanometern, die mit einer breitbandigen, auf der Erzeugung höherer Harmonischer („HHG“) basierenden Laborquelle erzeugt wurden, konnten sie die Entstehung eines magnetischen Tiefenprofils innerhalb einer zehn Nanometer dünnen ferrimagnetischen Eisen-Gadolinium-Schicht (FeGd) verfolgen, die zuvor mit einem Femtosekunden-Laserpuls im Infrarotbereich (IR) angeregt wurde. Die zugrundeliegende Sensitivität auf die Magnetisierung beruht auf dem transversalen magnetooptischen Kerr-Effekt (T-MOKE), der zu einer magnetisierungsabhängigen Reflektivität führt und zudem elementselektiv ist. Zum Erhalt von Tiefeninformation innerhalb der in Abb. 1 dargestellten Struktur entwickelte das Team den folgenden Ansatz: Wenn die Strahlung eine Wellenlänge nahe einer atomaren Resonanz hat, ändert sich ihre Eindringtiefe in das Material stark. Wie weit bestimmte spektrale Bestandteile des breitbandigen Röntgenpulses in das Material „hineinschauen“ können, hängt also von ihrer genauen Wellenlänge ab. Folglich kann eine Tiefeninformation aus den nach der Reflektion beobachteten spektralen Änderungen gewonnen werden. Für jeden Zeitpunkt nach Anregung lässt sich dabei das Magnetisierungsprofil durch Vergleich der gemessenen T-MOKE-Spektren mit von magnetischen Streusimulationen berechneten Spektren ermitteln (siehe Abb. 2).

    Im Experiment regte der 27 Femtosekunden kurze IR-Laserimpuls, der die Magnetisierungsänderung induzierte, die Heterostruktur von Seiten der Tantalschicht aus an, welche die eigentlich magnetische FeGd-Schicht bedeckt. In den ersten hundert Femtosekunden nach Anregung wurde daraufhin eine homogene Entmagnetisierung der FeGd-Schicht beobachtet. Zu ihrer Überraschung stellten die WissenschaftlerInnen jedoch fest, dass die laserinduzierte Magnetisierungsänderung zu späteren Zeiten von etwa einer Pikosekunde auf der dem einfallenden Laserpuls abgewandten Seite der FeGd-Schicht am stärksten war. Vorübergehend bildet sich dabei ein inhomogenes Magnetisierungsprofil, das eine verstärkte Entmagnetisierung an der Grenzfläche zur dünnen darunterliegenden Platinschicht zeigt. Anhand der Zeitskala des sich entwickelnden Magnetisierungsgradienten konnten die verantwortlichen mikroskopischen Prozesse identifiziert werden: Entgegen anfänglicher Erwartungen konnte ein signifikanter Einfluss ultraschnellen Spintransports durch die Grenzfläche ausgeschlossen werden, da dieser bereits während der ersten hundert Femtosekunden zu Magnetisierungsgradienten führen müsste. Stattdessen entsteht der beobachtete Effekt durch Wärmezufuhr aus der tieferen Platinschicht in die magnetische Schicht, da das Platin den IR-Laserpuls viel stärker absorbiert als die anderen Schichten der Heterostruktur und somit als lokalisierte interne Wärmequelle wirkt.

    Die von den ForscherInnen vorgestellte Methode ermöglicht es, die Entwicklung von Magnetisierungsprofilen mit Femtosekunden zeitlicher und Nanometer räumlicher Auflösung entlang der bisher schwer zugänglichen Tiefe einer Probe zu verfolgen. Damit ebnet sie einen Weg zur Überprüfung fundamentaler theoretischer Vorhersagen im Bereich des ultraschnellen Magnetismus sowie zur Untersuchung laserinduzierter Spintransport- und Wärmetransportphänomene in anwendungsrelevanten Systemen.

    Bildunterschriften:

    Abb. 1: Schematische Darstellung des experimentellen Spektroskopieaufbaus, der für die zeitaufgelösten T-MOKE-Messungen verwendet wurde. Die Probe wird mit Femtosekunden-Laserimpulsen im Infrarotbereich (2µm Wellenlänge) optisch angeregt und ihr Magnetisierungszustand mit Femtosekunden-Weichröntgenpulsen nach einem variablen Zeitintervall gemessen. Das Spektrum der reflektierten weichen Röntgenstrahlung wird durch ein Gitter in der horizontalen Ebene aufgespalten und mit einer CCD-Kamera aufgenommen. Der eingefügte Graph zeigt einen schematischen Querschnitt durch die untersuchte Heterostruktur über der tiefenabhängigen Absorption des IR-Laserimpulses, die in der Pt-Schicht (blau) stark erhöht ist.

    Abb.2: Entstehung transienter Magnetisierungsprofile entlang der Tiefe der laserangeregten Heterostruktur, die aus einer ferrimagnetischen Eisen-Gadolinium-Schicht (GdFe, rot unterlegt) umgeben von Tantal- (Ta, grün unterlegt) und Platinschichten (Pt, blau unterlegt) besteht.
    (a) Zeitaufgelöste T-MOKE-Spektren (Punkte), die zu verschiedenen Zeiten (Pikosekunden, ps) gemessen wurden, nachdem die IR-Laserimpulse die Probe mit unterschiedlichen Intensitäten (schwarz, blau, grün) angeregt haben. Die experimentellen Daten wurden mit hoher Übereinstimmung durch magnetische Streusimulationen reproduziert (Linien).
    (b) Magnetisierungstiefenprofile innerhalb der GdFe-Schicht, die aus den Simulationen bestimmt wurden.

    Teaser:
    Schematische Darstellung der ultraschnellen Magnetisierungsdynamik, die durch einen Femtosekunden-Laserpuls innerhalb einer ferrimagnetischen Eisen-Gadolinium-Heterostruktur (GdFe) angeregt wird. Die laserinduzierte Entmagnetisierung der magnetischen GdFe-Schicht wird an der Grenzfläche zur darunter liegenden Platin-Schicht (Pt) verstärkt, da das Platin den Laserpuls viel stärker absorbiert als die anderen Schichten und somit als lokalisierte interne Wärmequelle wirkt.


    Contact for scientific information:

    Dr. Martin Hennecke
    martin.hennecke(at)mbi-berlin.de
    +49 30 6392 1360

    Dr. Daniel Schick
    daniel.schick(at)mbi-berlin.de
    +49 30 6392 1311


    Original publication:

    Ultrafast element- and depth-resolved magnetization dynamics probed by transverse magneto-optical Kerr effect spectroscopy in the soft x-ray range
    Martin Hennecke, Daniel Schick, Themistoklis Sidiropoulos, Felix Willems, Anke Heilmann, Martin Bock, Lutz Ehrentraut, Dieter Engel, Piet Hessing, Bastian Pfau, Martin Schmidbauer, Andreas Furchner, Matthias Schnuerer, Clemens von Korff Schmising, Stefan Eisebitt
    Phys. Rev. Research 4, L022062 (2022)
    https://mbi-berlin.de/research/highlights/details/following-ultrafast-magnetizat...
    https://doi.org/10.1103/PhysRevResearch.4.L022062
    https://journals.aps.org/prresearch/abstract/10.1103/PhysRevResearch.4.L022062


    Images

    Schematische Darstellung des experimentellen Spektroskopieaufbaus
    Schematische Darstellung des experimentellen Spektroskopieaufbaus

    MBI

    Entstehung transienter Magnetisierungsprofil
    Entstehung transienter Magnetisierungsprofil

    MBI


    Attachment
    attachment icon Tiefenabhängige ultraschnelle Magnetisierungsdynamik

    Criteria of this press release:
    Journalists, Scientists and scholars, Students
    Physics / astronomy
    transregional, national
    Research results, Scientific Publications
    German


     

    Help

    Search / advanced search of the idw archives
    Combination of search terms

    You can combine search terms with and, or and/or not, e.g. Philo not logy.

    Brackets

    You can use brackets to separate combinations from each other, e.g. (Philo not logy) or (Psycho and logy).

    Phrases

    Coherent groups of words will be located as complete phrases if you put them into quotation marks, e.g. “Federal Republic of Germany”.

    Selection criteria

    You can also use the advanced search without entering search terms. It will then follow the criteria you have selected (e.g. country or subject area).

    If you have not selected any criteria in a given category, the entire category will be searched (e.g. all subject areas or all countries).