idw – Informationsdienst Wissenschaft

Nachrichten, Termine, Experten

Grafik: idw-Logo
Grafik: idw-Logo

idw - Informationsdienst
Wissenschaft

Science Video Project
idw-Abo

idw-News App:

AppStore

Google Play Store



Instance:
Share on: 
08/18/2022 11:19

When smooth muscle cells lack strength

Dr. Karl Guido Rijkhoek Hochschulkommunikation
Eberhard Karls Universität Tübingen

    University of Tübingen team discovers how malformations of the blood vessels can occur in mice – yielding information with possible ramifications for retinal disease

    The heart pumps blood through the vascular system, supplying cells with oxygen and energy Smooth muscle cells in the vessels finely regulate the blood flow. If they cannot perform their task, malformations and dilations of the vascular system may occur, according to a research team led by Professor Alfred Nordheim from the Interfaculty Institute of Cell Biology at the University of Tübingen, together with scientists from Tübingen, Münster and Uppsala, Sweden. Their new study, the result of experiments on an animal model, could be experimentally applied to a model of a specific retinal disease of the eye in premature infants, as it points to a potential new approach to treatment. The study has been published in Circulation Research.

    In arterial and venous blood vessels, smooth muscle cells selectively contract and relax to regulate where more and where less blood flows. They also give the vascular network the strength it needs to withstand blood pressure. In an experiment, Alfred Nordheim and his team inactivated the gene for the serum response factor (SRF) in mice, which significantly regulates the cells' ability to contract. "This led to significant vasodilatation and vascular malformations in the blood vessels," Nordheim reported.

    Reduced blood flow

    The malformations involve direct connections between arteries and veins, Nordheimer explained. "The arteries take a shortcut to the veins, bypassing tiny microvessels. Similar malformations are also known in certain rare blood vessel diseases in humans. Our team was able to show that such shortcuts cause the surrounding tissue to receive reduced blood flow." The lack of strength in the smooth muscle cells sometimes even led to ruptures in the vessels, Nordheim said.

    Side track to another disease

    “This newly-gained knowledge also put us on the track of a completely different disease, called ischemic retinopathy. This is a retinal disease in premature infants, which in the worst case can lead to blindness," says the study's lead author Dr. Michael Orlich of Uppsala University. An overreaction in the growth of blood vessels leads to pathological changes in cells known as pericytes. "Among other things, the pathological pericytes produce contractile proteins, similar to smooth muscle cells," explains Orlich. "We had expected that the serum response factor also plays an important role here. In addition, we assumed that the symptoms of retinal disease would improve if the overreaction of the pericytes was reduced."

    The research team tested its assumptions experimentally in mice in which a disease comparable to ischemic retinopathy had been induced. "When we specifically switched off the serum response factor in pericytes of these mice, the symptoms decreased," Orlich said, summarizing the results. This, he says, could form a potential approach for new treatments of ischemic retinopathies in humans.


    Contact for scientific information:

    Dr. Michael Orlich
    Uppsala Universitet, Sweden
    Immunology, Genetics and Pathology
    michael.orlich[at]igp.uu.se

    Professor Dr. Alfred Nordheim
    University of Tübingen
    Interfaculty Institute for Cell Biology
    Phone +49 7071 29-78897
    alfred.nordheim[at]uni-tuebingen.de


    Original publication:

    Michael M. Orlich, Rodrigo Diéguez-Hurtado, Regine Muehlfriedel, Vithiyanjali Sothilingam, Hartwig Wolburg, Cansu Ebru Oender, Pascal Woelffing, Christer Betsholtz, Konstantin Gaengel, Mathias Seeliger, Ralf H. Adams, and Alfred Nordheim: Mural Cell SRF Controls Pericyte Migration, Vessel Patterning and Blood Flow. Circulation Research,
    https://doi.org/10.1161/CIRCRESAHA.122.321109


    Images

    Criteria of this press release:
    Journalists, Scientists and scholars
    Biology, Medicine
    transregional, national
    Research results, Scientific Publications
    English


     

    Help

    Search / advanced search of the idw archives
    Combination of search terms

    You can combine search terms with and, or and/or not, e.g. Philo not logy.

    Brackets

    You can use brackets to separate combinations from each other, e.g. (Philo not logy) or (Psycho and logy).

    Phrases

    Coherent groups of words will be located as complete phrases if you put them into quotation marks, e.g. “Federal Republic of Germany”.

    Selection criteria

    You can also use the advanced search without entering search terms. It will then follow the criteria you have selected (e.g. country or subject area).

    If you have not selected any criteria in a given category, the entire category will be searched (e.g. all subject areas or all countries).