idw – Informationsdienst Wissenschaft

Nachrichten, Termine, Experten

Grafik: idw-Logo
Grafik: idw-Logo

idw - Informationsdienst
Wissenschaft

Science Video Project
idw-Abo

idw-News App:

AppStore

Google Play Store



Instance:
Share on: 
08/22/2022 09:35

Die Elektronen-Zeitlupe: Ionenphysik auf Femtosekundenskala

Dr. Florian Aigner PR und Marketing
Technische Universität Wien

    Wenn Ionen ein Material durchdringen, laufen hochkomplexe Prozesse ab – so schnell, dass man sie bisher kaum analysieren konnte. Aber durch ausgeklügelte Messungen gelang das nun.

    Wie reagieren verschiedene Materialien auf den Einschlag von Ionen? Das ist eine Frage, die in vielen Forschungsbereichen eine wichtige Rolle spielt – etwa bei der Kernfusionsforschung, wenn die Wände des Fusionsreaktors von energiereichen Ionen bombardiert werden, aber auch in der Halbleitertechnik, wenn man Halbleiter mit Ionenstrahlen beschießt um winzige Strukturen herzustellen.

    Das Resultat eines Ioneneinschlags auf einem Material ist nachträglich leicht zu untersuchen. Schwierig ist es aber, den zeitlichen Ablauf solcher Prozesse zu verstehen. An der TU Wien gelang es nun, auf einer Zeitskala von einer Femtosekunde zu analysieren, was mit den einzelnen beteiligten Teilchen passiert, wenn ein Ion Materialien wie Graphen oder Molybdändisulfid durchdringt. Entscheidend war dabei eine sorgfältige Analyse der Elektronen, die dabei emittiert werden. Aus ihnen kann man den zeitlichen Ablauf des Prozesses rekonstruieren – so wird die Messung gewissermaßen zur „Elektronen-Zeitlupenaufnahme“. Die Ergebnisse wurden nun im Fachjournal „Physical Review Letters“ publiziert und sogar als „Editors‘ Suggestion“ auserkoren.

    Zwanzig- bis vierzigfach geladene Teilchen

    In der Forschungsgruppe von Prof. Richard Wilhelm am Institut für Angewandte Physik der TU Wien arbeitet man mit hochgeladenen Ionen. Xenon-Atomen, die im neutralen Zustand 54 Elektronen haben, werden zwischen 20 und 40 Elektronen entrissen, die stark positiv geladenen Xenon-Ionen, die übrigbleiben, werden dann auf eine dünne Materialschicht geschossen.

    „Besonders interessieren wir uns für die Wechselwirkung dieser Ionen mit dem Material Graphen, das nur aus einer einzigen Lage von Kohlenstoffatomen besteht“, sagt Anna Niggas, die Erstautorin des aktuellen Papers ist. „Wir wussten nämlich schon aus unseren früheren Experimenten, dass Graphen ganz besonders interessante Eigenschaften hat: Der Elektronentransport in Graphen ist extrem schnell.“

    Die Teilchen reagieren so schnell, dass man die Vorgänge nicht direkt beobachten kann. Doch es gibt spezielle Tricks, die man anwenden kann: „Bei solchen Prozessen wird meist auch eine große Anzahl von Elektronen emittiert“, erklärt Anna Niggas. „Wir konnten die Anzahl und die Energie dieser Elektronen sehr genau messen, die Ergebnisse mit theoretischen Berechnungen vergleichen, die unsere Ko-Autoren von der Universität Kiel beisteuerten, und auf diese Weise konnten wir auf Femtosekunden-Skala entschlüsseln, was hier genau passiert.“

    Femtosekunden-Reise durch das Graphen

    Zunächst nähert sich das hochgeladene Ion der dünnen Materialschicht. Durch seine positive Ladung erzeugt es ein elektrisches Feld und beeinflusst dadurch die Elektronen des Materials – schon kurz vor dem Aufprall bewegen sich Elektronen des Materials in Richtung der Einschlagstelle. Irgendwann wird das elektrische Feld so stark, dass Elektronen aus dem Material herausgerissen und vom hochgeladenen Ion eingefangen werden. Unmittelbar darauf schlägt das Ion dann in der Oberfläche ein und durchdringt das Material. Dabei kommt es zu einer komplizierten Interaktion, das Ion überträgt in kurzer Zeit viel Energie auf das Material, dabei werden Elektronen fortgeschossen.

    Wenn im Material Elektronen fehlen, bleibt dort positive Ladung zurück. Das wird allerdings rasch durch nachrückende Elektronen aus anderen Bereichen des Materials ausgeglichen. Bei Graphen ist dieser Prozesse extrem schnell, innerhalb des Materials entstehen auf atomarer Skala kurzfristig starke Ströme. In Molybdändisulfid ist dieser Prozess etwas langsamer. In beiden Fällen beeinflusst die Verteilung der Elektronen im Material aber ihrerseits wieder die Elektronen, die schon zuvor aus dem Material herausgelöst wurden – und genau dadurch können sie dann, wenn man sie sorgfältig detektiert, Auskunft über die zeitliche Struktur des Einschlags liefern. Nur schnelle Elektronen können das Material verlassen, langsamere Elektronen kehren um, werden wieder eingefangen und landen nicht im Elektronendetektor.

    Das Ion braucht nur rund eine Femtosekunde, um eine Graphen-Schicht zu durchdringen. Prozesse auf derart kurzen Zeitskalen konnte man bisher schon mit ultrakurzen Laserpulsen vermessen – doch die würden in diesem Fall viel Energie im Material deponieren und den Prozess völlig verändern.

    „Wir haben mit unserer Methode einen Zugang gefunden, der ganz fundamentale neue Einblicke erlaubt“, sagt Richard Wilhelm, Leiter eines FWF START Projektes an der TU Wien. „Die Ergebnisse helfen uns zu verstehen, wie Materie auf sehr kurze und sehr intensive Strahlungseinwirkung reagiert – nicht nur auf Ionen, sondern letztlich auch auf Elektronen oder Licht.“

    Die beschriebene Forschung wurde durch das „Innovative Projekte“ Programm und das Doktoratskolleg TU-D der TU Wien sowie den FWF gefördert.


    Contact for scientific information:

    Dipl.-Ing. Anna Niggas
    Institut für Angewandte Physik
    Technische Universität Wien
    +43 1 58801 134347
    anna.niggas@tuwien.ac.at


    Original publication:

    A. Niggas et al., Ion-induced surface charge dynamics in freestanding monolayers of graphene and MoS2 probed by the emission of electrons, PRL 129, 086802, 2022. https://journals.aps.org/prl/abstract/10.1103/PhysRevLett.129.086802


    Images

    Hochgeladene Ionen emittieren beim beim Durchdringen von dünnen Materialien viele Elektronen, die von der Verteilung der restlichen Elektronen im Material beeinflusst werden.
    Hochgeladene Ionen emittieren beim beim Durchdringen von dünnen Materialien viele Elektronen, die vo ...
    TU Wien
    TU Wien

    Das TU Wien-Team von links nach rechts: Friedrich Aumayr, Anna Niggas und Richard Wilhelm.
    Das TU Wien-Team von links nach rechts: Friedrich Aumayr, Anna Niggas und Richard Wilhelm.
    TU Wien
    TU Wien


    Criteria of this press release:
    Journalists, all interested persons
    Physics / astronomy
    transregional, national
    Research results, Scientific Publications
    German


     

    Help

    Search / advanced search of the idw archives
    Combination of search terms

    You can combine search terms with and, or and/or not, e.g. Philo not logy.

    Brackets

    You can use brackets to separate combinations from each other, e.g. (Philo not logy) or (Psycho and logy).

    Phrases

    Coherent groups of words will be located as complete phrases if you put them into quotation marks, e.g. “Federal Republic of Germany”.

    Selection criteria

    You can also use the advanced search without entering search terms. It will then follow the criteria you have selected (e.g. country or subject area).

    If you have not selected any criteria in a given category, the entire category will be searched (e.g. all subject areas or all countries).