idw – Informationsdienst Wissenschaft

Nachrichten, Termine, Experten

Grafik: idw-Logo
Grafik: idw-Logo

idw - Informationsdienst
Wissenschaft

Science Video Project
idw-Abo

idw-News App:

AppStore

Google Play Store



Instance:
Share on: 
08/24/2022 15:11

Different flavors of inhibition save the day

Dr. Irina Epstein Press and Public Relations
Max-Planck-Institut für Hirnforschung

    During development, lack of sensory experience elicits powerful plasticity mechanisms that alter brain circuitry. Many inhibitory neuron subtypes are known to influence circuit dynamics, however, how they interact with plasticity is not yet fully understood. Scientists at the Max Planck Institute for Brain Research in Frankfurt have investigated how synaptic plasticity in rodents, who were deprived of vision in one eye, affects network activity in a circuit model of the sensory cortex. Their findings point to the role of different inhibitory interneuron subtypes to explain the temporal pattern of firing rate change of excitatory and inhibitory neurons during sensory deprivation.

    Multiple plasticity mechanisms interact and balance each other as they shape neural circuits during their development. A way to visualize the action of these mechanisms is to break the system and observe how it reacts. For decades, experimental neuroscientists have used monocular deprivation, a closure of one eye during specific periods in development. Regardless of its rich tradition in neuroscience, the effects of monocular deprivation still leave scientists with many unsolved riddles.
     
    Only recently, experimentalists found that the firing rates of excitatory and inhibitory neurons are regulated in a distinct, cell-type specific manner by the plasticity induced by ongoing monocular deprivation. To investigate how the cell-type specific regulation is achieved, Julijana Gjorgjieva, research group leader at the Max Planck Institute for Brain Research and Professor at TU Munich and her graduate student Leonidas Richter developed a mechanistic model of the cortical circuit to study how the interactions of experimentally observed changes to synapses (the connections between neurons) regulate activity.
     
    “We found that cell-type specific regulation is not easily achieved in a simple model of excitatory and a single type of inhibitory neurons as it is commonly used in modelling studies. We tied this result to the so-called paradoxical effect, which decreases inhibitory firing rates even when they are driven”, explains Richter.
     
    The scientists analyzed how this effect plays out with the more complex plasticity induced by monocular deprivation. This allowed them to investigate the conditions for modulating excitatory and inhibitory firing rates in opposite directions. “We discovered that the diversity of inhibitory interneurons in the cortex is key to capture the regulation of firing rates especially when neurons are strongly connected as is the case in the cortex.”
     
    “Diverse interneurons are known to play important specific roles in cortical computations. Our findings suggest that they also have a key role already in the development of the circuitry underlying these computations”, says Gjorgjieva.


    Contact for scientific information:

    Julijana Gjorgjieva, Ph.D.
    Research Group Leader
    Max Planck Institute for Brain Research, Frankfurt am Main, Germany
    gjorgjieva@brain.mpg.de

    Professorship of Computational Neurosciences
    School of Life Sciences, Technical University of Munich, Freising, Germany


    Original publication:

    L.M.A. Richter and J. Gjorgjieva. A circuit mechanism for independent modulation of excitatory and inhibitory firing rates after sensory deprivation. PNAS (2022) e2116895119 https://doi.org/10.1073/pnas.2116895119


    Images

    Synaptic plasticity regulates network activity in the sensory cortex of rodents who were deprived of vision in one eye.
    Synaptic plasticity regulates network activity in the sensory cortex of rodents who were deprived of ...

    Max Planck Institute for Brain Research / J. Kuhl


    Criteria of this press release:
    Journalists, Scientists and scholars, Students
    Biology, Medicine
    transregional, national
    Research results, Scientific Publications
    English


     

    Help

    Search / advanced search of the idw archives
    Combination of search terms

    You can combine search terms with and, or and/or not, e.g. Philo not logy.

    Brackets

    You can use brackets to separate combinations from each other, e.g. (Philo not logy) or (Psycho and logy).

    Phrases

    Coherent groups of words will be located as complete phrases if you put them into quotation marks, e.g. “Federal Republic of Germany”.

    Selection criteria

    You can also use the advanced search without entering search terms. It will then follow the criteria you have selected (e.g. country or subject area).

    If you have not selected any criteria in a given category, the entire category will be searched (e.g. all subject areas or all countries).