idw – Informationsdienst Wissenschaft

Nachrichten, Termine, Experten

Grafik: idw-Logo
Grafik: idw-Logo

idw - Informationsdienst
Wissenschaft

Science Video Project
idw-Abo

idw-News App:

AppStore

Google Play Store



Instance:
Share on: 
10/12/2022 11:59

Virenfahndung in der Kanalisation

Jana Schlütter Kommunikation
Max-Delbrück-Centrum für Molekulare Medizin in der Helmholtz-Gemeinschaft

    Mit am Max Delbrück Center entwickelten Algorithmen lassen sich nicht nur neue Varianten des Coronavirus im Abwasser rasch aufspüren. Das Verfahren, das ein Team um Altuna Akalin in „Science of the Total Environment“ vorstellt, kommt auch anderen Krankheitserregern leicht auf die Schliche.

    Nicht nur das Coronavirus verändert permanent sein Gesicht, um sich den Angriffen des menschlichen Immunsystems möglichst zu entziehen. Auch andere Erreger nutzen diese Strategie: Durch winzige Veränderungen in ihrem Erbgut, den Mutationen, bringen sie immer wieder neue Varianten hervor, denen die Körperabwehr oft weniger entgegenzusetzen hat als den Erregern, die sie schon durch eine Infektion oder Impfung kennt.

    Alle Infizierten hinterlassen ihre Spuren

    „Daher ist es so wichtig, neu entstehende Virusvarianten möglichst rasch aufzuspüren“, erklärt Dr. Altuna Akalin, Leiter der „Bioinformatics and Omics Data Science Platform“ am Berliner Institut für Medizinische Systembiologie des Max Delbrück Centers (MDC-BIMSB). Gemeinsam mit vielen weiteren Forschenden des Max Delbrück Centers, den Berliner Wasserbetrieben und dem Laborunternehmen amedes hat der Bioinformatiker Akalin ein Verfahren entwickelt, um diese Varianten im Abwasser nachzuweisen. Denn dort hinterlässt sie jeder Mensch, der sich mit den Viren infiziert hat – unabhängig davon, ob oder welche Symptome er entwickelt und ob er getestet ist oder nicht.

    Beteiligt waren an dem Projekt die Arbeitsgruppen „RNA-Biologie und Posttranscriptionale Regulation“ von Professor Markus Landthaler und „Systembiologie von Gen-regulatorischen Elementen“ von Professor Nikolaus Rajewsky sowie die Technologieplattform „Genomik“, die Dr. Janine Altmüller leitet. Landthaler und Rajewsky sind gemeinsam mit Akalin Letztautoren der aktuellen Publikation. Erstmals vorgestellt hatte das Team um Akalin
    das computergestützte Werkzeug namens „PiGx SARS-CoV-2“ im Dezember 2021 auf der Preprint-Platform „medRxiv“. Erstautor*innen waren damals wie jetzt Vic-Fabienne Schumann und Dr. Rafael Cuadrat aus Akalins Arbeitsgruppe sowie Dr. Emanuel Wyler aus Landthalers Team.

    Schneller als mit Proben von Patient*innen

    Die Grundidee der Datenanalyse-Pipeline hat sich seither nicht verändert. „Um sie zu nutzen, muss das Erbgut der Viren im Abwasser zunächst sequenziert, also entschlüsselt werden“, erklärt Akalin. Die gewonnen Daten werden dann gemeinsam mit ein paar zusätzlichen Informationen, zum Beispiel zur verwendeten Sequenziermethode, in die Pipeline eingespeist. Heraus kommen grafische Darstellungen, an denen nicht nur Expert*innen, sondern auch Laien die Infektionsdynamik und die zirkulierenden Virusvarianten zeitgleich an verschiedenen Standorten ablesen können.

    „Auch neu auftretende Varianten lassen sich auf diese Weise aufspüren – in den meisten Fällen sogar ein paar Tage früher, als es durch kontinuierliche Tests und die Sequenzierung von Patient*innenproben möglich wäre“, sagt Akalin. „Dank unserer Kooperationen konnten wir zudem zeigen, dass ein solches Abwasser-Frühwarnsystem sowohl in einem wissenschaftlichen Umfeld als auch auf industrieller Ebene erfolgreich ist.“ Routineuntersuchungen führe das Max Delbrück Center aber nicht durch, man stelle das Verfahren lediglich zur Verfügung, ergänzt Akalin.

    Die Pipeline funktioniert weltweit

    Das jetzt im Fachblatt „Science of the Total Environment“ beschriebene Tool hat sich in den vergangenen Monaten weiterentwickelt. „Die von uns erstellten Algorithmen sind robuster geworden“, sagt Akalin. „Wir haben etwa den Beweis erbracht, unter anderem am Beispiel von New York, dass die Pipeline Daten aus ganz unterschiedlichen Teilen der Welt zuverlässig analysieren kann – auch unabhängig davon, nach welchem Protokoll diese Daten erstellt wurden.“

    Mit ihrer Methode haben Akalin und seine Kolleg*innen bereits die Delta- und die Omikron-Variante des Coronavirus entdeckt, bevor diese zu den jeweils dominierenden Varianten in der Bevölkerung wurden. „Unsere Software kann neu auftretende Mutationen sowohl räumlich als auch zeitlich verfolgen“, erklärt Akalin. „Finden sich an bestimmten Orten im Abwasser immer mehr Mutationen, werden diese markiert, um auf die Möglichkeit einer neuen Virusvariante hinzuweisen.“

    „Mithilfe zusätzlicher Tools, die in die Pipeline integriert werden, lassen sich sogar die Auswirkungen der gefundenen Mutation vorhersagen“, ergänzt Akalin. Man könne so künftig beispielsweise abschätzen, inwieweit sich die neuen Virusvarianten dem menschlichen Immunsystem entziehen – und ob sie dadurch ansteckender als die alten Varianten sein werden oder schwerere Krankheitsverläufe hervorrufen.

    Auch Grippeviren lassen sich aufspüren

    „Eines der wichtigsten Merkmale unseres Ansatzes besteht jedoch darin, dass wir ein sehr robustes System mit einem hohen Automatisierungsgrad entwickelt haben, so dass es sich ohne Weiteres bei groß angelegten Abwasserüberwachungen einsetzen lässt“, sagt Akalin. Allerdings wolle sein Team nun noch weiter erforschen, wie das optimale Verfahren aussehe, um die Abwasserproben zu entnehmen. „Wo und wann man eine Probe nimmt, scheint die Daten durchaus zu beeinflussen“, räumt der Wissenschaftler ein.

    Ziel aller beteiligten Teams am MDC-BIMSB ist es jedenfalls, den Ansatz nun auf andere Erreger als das Coronavirus auszuweiten und ein Frühwarnsystem zum Beispiel für kommende Grippe- oder Noroviren zu etablieren – also für Erreger, die sich ebenfalls stark auf die menschliche Gesundheit und damit auch auf die wirtschaftliche Produktivität auswirken.

    „In den USA gibt es aufstrebende Unternehmen, die solche Dienstleistungen bereits anbieten“, sagt Akalin. Es sei daher absehbar, dass diese Art von Überwachungsstrategie künftig regelmäßig auch in anderen Teilen der Welt und, so hoffe er, auch für andere Krankheitserreger eingesetzt werde. Auch Impfstoffhersteller könnten von der Frühwarnung profitieren und ihre Impfstoffe in Zukunft womöglich leichter als bisher an neu auftretende Varianten anpassen.

    Max Delbrück Center

    Das Max-Delbrück-Centrum für Molekulare Medizin in der Helmholtz-Gemeinschaft (Max Delbrück Center) gehört zu den international führenden biomedizinischen Forschungszentren. Nobelpreisträger Max Delbrück, geboren in Berlin, war ein Begründer der Molekularbiologie. An den Standorten in Berlin-Buch und Mitte analysieren Forscher*innen aus rund 70 Ländern das System Mensch – die Grundlagen des Lebens von seinen kleinsten Bausteinen bis zu organ-übergreifenden Mechanismen. Wenn man versteht, was das dynamische Gleichgewicht in der Zelle, einem Organ oder im ganzen Körper steuert oder stört, kann man Krankheiten vorbeugen, sie früh diagnostizieren und mit passgenauen Therapien stoppen. Die Erkenntnisse der Grundlagenforschung sollen rasch Patient*innen zugutekommen. Das Max Delbrück Center fördert daher Ausgründungen und kooperiert in Netzwerken. Besonders eng sind die Partnerschaften mit der Charité – Universitätsmedizin Berlin im gemeinsamen Experimental and Clinical Research Center (ECRC) und dem Berlin Institute of Health (BIH) in der Charité sowie dem Deutschen Zentrum für Herz-Kreislauf-Forschung (DZHK). Am Max Delbrück Center arbeiten 1800 Menschen. Finanziert wird das 1992 gegründete Max Delbrück Center zu 90 Prozent vom Bund und zu 10 Prozent vom Land Berlin. www.mdc-berlin.de


    Contact for scientific information:

    Dr. Altuna Akalin
    Leiter der Technologieplattform „Bioinformatics and omics data science“
    Max Delbrück Center
    +49 30 9406-4271
    Altuna.Akalin@mdc-berlin.de


    Original publication:

    Vic-Fabienne Schumann, Rafael Ricardo de Castro Cuadrat, Emanuel Wyler et al. (2022): „COVID-19 infection dynamics revealed by SARS-CoV-2 wastewater sequencing analysis and deconvolution“, Science of the total environment, DOI: 10.1016/j.scitotenv.2022.158931


    More information:

    https://doi.org/10.1016/j.scitotenv.2022.158931 - Studie
    https://www.mdc-berlin.de/de/news/press/omikron-hat-berlin-im-griff - PM zu Omikrondaten
    https://www.mdc-berlin.de/bioinformatics - Bioninformatics and omics data science @ Max Delbrück Center
    https://www.mdc-berlin.de/landthaler - Landthaler Lab
    https://www.mdc-berlin.de/n-rajewsky - N.Rajewsky Lab


    Images

    Abwasseranalyse
    Abwasseranalyse
    Felix Petermann
    Max Delbrück Center

    Abwasserprobe vor der Sequenzierung.
    Abwasserprobe vor der Sequenzierung.
    Felix Petermann
    Max Delbrück Center


    Criteria of this press release:
    Journalists, Scientists and scholars
    Biology, Environment / ecology, Information technology, Medicine
    transregional, national
    Cooperation agreements, Research results
    German


     

    Help

    Search / advanced search of the idw archives
    Combination of search terms

    You can combine search terms with and, or and/or not, e.g. Philo not logy.

    Brackets

    You can use brackets to separate combinations from each other, e.g. (Philo not logy) or (Psycho and logy).

    Phrases

    Coherent groups of words will be located as complete phrases if you put them into quotation marks, e.g. “Federal Republic of Germany”.

    Selection criteria

    You can also use the advanced search without entering search terms. It will then follow the criteria you have selected (e.g. country or subject area).

    If you have not selected any criteria in a given category, the entire category will be searched (e.g. all subject areas or all countries).