idw – Informationsdienst Wissenschaft

Nachrichten, Termine, Experten

Grafik: idw-Logo
Grafik: idw-Logo

idw - Informationsdienst
Wissenschaft

Science Video Project
idw-Abo

idw-News App:

AppStore

Google Play Store



Instance:
Share on: 
10/17/2022 14:16

HYPERSPACE research project aims to create basis for intercontinental quantum network

Desiree Haak Press & Public Relation
Fraunhofer-Institut für Angewandte Optik und Feinmechanik IOF

    Researchers from Europe and Canada want to jointly create the basis for an intercontinental network for quantum communication. The HYPERSPACE project will focus on the investigation of the distribution of entangled photons via satellite. The research project has now started its three-year term.

    At short distances, entangled photons have already been successfully exchanged in various experiments. But intercontinental and thus potentially global exchange remains a challenge. This will be tackled within the new research project HYPERSPACE. Together, researchers from Europe and Canada want to create the basis for a Canadian-European connection. The strategic collaboration will focus on research into integrated quantum photonics and optical space communications with the goal of creating a satellite-based quantum network between the continents.

    Entanglement distribution in space

    Experiments are being conducted all over the world to exchange entangled photons over the longest possible distances, e.g., by means of free beams through the air or via optical fibers laid in the ground. However, the detector noise and the unavoidable losses in fiber-based transmission currently limit the range of terrestrial transmission to a few hundred kilometers. In the future, so-called quantum repeaters could enable entanglement even over longer fiber distances. However, researchers are still facing a number of technological challenges before a sufficient increase in range, as it would be necessary for a global network, can be realized. The solution: the direct exchange of entangled photons in space via optical satellite links.

    The overarching goal of HYPERSPACE is therefore to further develop satellite-based quantum communications by appropriate experiments into scalable global quantum networks. To this end, HYPERSPACE encompasses research and innovation along the entire process chain of photonic quantum communication: from noise-resilient state coding, fully fiber-embedded and photonically integrated quantum light sources and free-space compatible state analyzers, to the implementation of advanced protocols facilitated, or even enabled by the use of entanglement in multiple degrees of freedom - so-called hyper-entanglement.

    Eight partners from Europe and Canada

    A total of eight partners from Europe and Canada are involved in the project: In addition to the Fraunhofer Institute for Applied Optics and Precision Engineering IOF (Germany), these are the Università degli Studi di Pavia and Università degli Studi di Padova (both Italy), the Commissariat à l'énergie atomique et aux énergies alternatives CEA-LETI (France), the Vienna University of Technology (Austria), the Institut National de la Recherche Scientifique, and the University of Toronto and University of Waterloo (all Canada). The research project is coordinated by Fraunhofer IOF.

    The project is co-funded by the European Commission (within the Horizon Europe program) and the Natural Sciences and Engineering Research Council of Canada (NSERC) with 2.8 million euros. Fraunhofer IOF receives a share of 300,000 euros.

    Applications in information technology and sensor technology

    Quantum entanglement, once described by Albert Einstein as "spooky action at a distance," is now considered a key resource for the latest applications in information processing and sensing. A global quantum internet will enable significantly improved, previously even unthinkable applications, such as more precise synchronization of clocks, highly efficient cloud computing, or even highly secure data transmission using quantum cryptography.

    In contrast to conventional cryptographic methods, which provide security through the computational effort involved in decryption, the security of quantum cryptography is based on physical principles.


    Contact for scientific information:

    Dr. Fabian Steinlechner
    Fraunhofer IOF
    Department Emerging Technologies

    Phone: +49 3641 807 - 733
    Mail: fabian.steinlechner@iof.fraunhofer.de


    More information:

    https://www.iof.fraunhofer.de/en/pressrelease/2022/hyperspace.html


    Images

    Attachment
    attachment icon Press Release: HYPERSPACE research project aims to create basis for intercontinental quantum network

    Criteria of this press release:
    Journalists, Scientists and scholars
    Information technology, Physics / astronomy
    transregional, national
    Research projects
    English


     

    Help

    Search / advanced search of the idw archives
    Combination of search terms

    You can combine search terms with and, or and/or not, e.g. Philo not logy.

    Brackets

    You can use brackets to separate combinations from each other, e.g. (Philo not logy) or (Psycho and logy).

    Phrases

    Coherent groups of words will be located as complete phrases if you put them into quotation marks, e.g. “Federal Republic of Germany”.

    Selection criteria

    You can also use the advanced search without entering search terms. It will then follow the criteria you have selected (e.g. country or subject area).

    If you have not selected any criteria in a given category, the entire category will be searched (e.g. all subject areas or all countries).