idw - Informationsdienst
Wissenschaft
The substitution of petrochemical materials with those obtained from renewable raw materials is an important step towards increasing sustainability. In just two years of intensive and open collaboration between Empa and the Datwyler Schweiz AG as part of an Innosuisse project, a process was successfully developed that brought together the worlds of cellulose and rubbers.
The substitution of petrochemical materials with those obtained from renewable raw materials is an important step towards increasing sustainability. Materials derived from plant cellulose are promising candidates for this application area. They are renewable, abundant and have a low environmental impact. In the rubber industry, microfibrillated cellulose (MFC) is receiving a lot of attention due to its high stiffness, the morphology of its fibrils, its low density and its mechanical properties. Thus, it has a high potential to improve the properties of rubber compounds.
However, it is a challenge to blend MFC with hydrophobic, i.e. water-repellent, rubbers. Together with its development partner Empa, Daetwyler has developed an industrial process for the surface modification of MFC to solve this challenge. Initial trials involved replacing petrochemical aramid fibers with modified MFCs.
The results show good compatibility between the MFC filler and the rubber matrix with strong reinforcing effects, even better than those achieved with conventional petroleum-based aramid fibers. The development of these novel fillers will be an important step towards increasing the sustainability of rubber products such as pump diaphragms.
Two years from research to industy implementation
In just two years of intensive and open collaboration between Empa and the Datwyler Schweiz AG as part of an Innosuisse project, a process was successfully developed that brought together the worlds of cellulose and rubbers. In this short time, it was possible to cover the entire arc from research to industrial implementation.
"This project is a very good example of how valuable Innosuisse's support is for such successful innovation projects, which not only strengthen and economically advance the companies themselves through novel products and processes, but ultimately also the entire location of Switzerland", says Empa researcher Thomas Geiger.
Dr. Thomas Geiger
Empa, Cellulose & Wood Materials
phone: +41 58 765 4723
thomas.geiger@empa.ch
Dr. Mattia Alberto Lucchini
Datwyler Schweiz AG, Head of Wearable Sensors Development
mattia.lucchini@datwyler.com
phone: +41 41 875 13 14
Liu, M.; Hoffmann, K. G.; Geiger, T.; Nyström, G. Chapter 10 - Production of microfibrillated cellulose fibers and their application in polymeric composites. In: Micro and Nano Technologies, Nanotechnology in Paper and Wood Engineering, Elsevier, 2022; pp 197-229, doi:10.1016/B978-0-323-85835-9.00003-9.
https://doi.org/10.1016/B978-0-323-85835-9.00003-9
https://www.empa.ch/web/s604/rubbermfc Empa media release
It is a challenge to blend microfibrillated cellulose (MFC) with hydrophobic, i.e. water-repellent, ...
Copyright: Empa / Daetwyler Schweiz AG
Criteria of this press release:
Journalists
Chemistry, Environment / ecology, Materials sciences
transregional, national
Research results, Transfer of Science or Research
English
You can combine search terms with and, or and/or not, e.g. Philo not logy.
You can use brackets to separate combinations from each other, e.g. (Philo not logy) or (Psycho and logy).
Coherent groups of words will be located as complete phrases if you put them into quotation marks, e.g. “Federal Republic of Germany”.
You can also use the advanced search without entering search terms. It will then follow the criteria you have selected (e.g. country or subject area).
If you have not selected any criteria in a given category, the entire category will be searched (e.g. all subject areas or all countries).