idw – Informationsdienst Wissenschaft

Nachrichten, Termine, Experten

Grafik: idw-Logo
Grafik: idw-Logo

idw - Informationsdienst
Wissenschaft

Science Video Project
idw-Abo

idw-News App:

AppStore

Google Play Store



Instance:
Share on: 
12/12/2022 11:00

W-band receive module for ultra-low noise data transmission in satellite communications

Jennifer Funk Marketing und Kommunikation
Fraunhofer-Institut für Angewandte Festkörperphysik IAF

    To meet the world’s rapidly growing data consumption and increasing bandwidth requirements, satellite communications are shifting to higher frequencies. The W-band (75–110 GHz) is well suited for use in space, but technical components have been lacking so far. For this reason, Fraunhofer IAF has launched the BEACON project: Together with researchers from RPG-Radiometer Physics, a novel W-band receive front-end module is to be realized as part of the ESA ARTES program. The goal is to develop a technology that is lower in noise than any previous W-band amplifier module and thus enables the transfer of extremely high data rates through space.

    Due to limited bandwidth, it is becoming increasingly difficult to meet the growing need for higher data rates in satellite systems with very high data throughput. Using higher frequencies can help to meet this increasing demand. The W-band (75–110 GHz) is well suited for satellite communication applications: Not only does it offer high data throughput when used at high altitudes and in space, but it is also likely to significantly increase system capacity, reduce the number of gateway earth stations, and thus reduce overall system costs. However, there has been a lack of suitable technology and hardware for applications in the W-band frequency range to date.

    The Fraunhofer Institute for Applied Solid State Physics IAF, together with RPG Radiometer Physics GmbH, has taken up this challenge in the project “BEACON—W-band Integrated Active Receive Front-End”: The project partners are developing an integrated active W-band receive frond-end with an operating frequency of 81 to 86 GHz that will enable extremely high data rates or long-distance data transmission with low power consumption.

    Minimal noise at high data throughput

    The receive module is based on Fraunhofer IAF’s extremely low-noise MMIC technology (MMIC—monolithic microwave integrated circuit). “Fraunhofer IAF has done tremendous development work in the mHEMT process over the past years and has acquired a core competence in developing amplifiers with the lowest noise worldwide. Based on this, the project aims to reduce the noise figure to below 3.5 dB and thus significantly improve the state of the art,” explains Dr. Philipp Neininger, project coordinator and researcher at Fraunhofer IAF.

    In addition, the receive module is designed to isolate left- from right-hand circular polarization and amplify them with two separate channels (LHCP and RHCP), which serves to effectively double data throughput.

    A major challenge in the BEACON project is the novel arrangement of components on the very small module area. The new approach involves integrating a large number of functions within a very small footprint: These include the polarizer, waveguide transitions to two individual amplifiers, two coaxial output connectors and the associated DC circuitry. “The combination of these features—extremely low noise, two different polarizations and an innovative array—brings an enormous technological advance in the field of W-band components,” Neininger summarizes the project proposal.

    W-band data transmission from space already successfully tested

    Only last year, satellite signals in the W-band frequency range were received from space for the first time. The W-Cube nanosatellite began its journey to polar orbit aboard a Falcon 9 rocket in the summer of 2021 and has since been successfully transmitting satellite signals to Earth at 75 GHz from an altitude of 500 kilometers. For this mission, Fraunhofer IAF had already developed the transmitter module of the satellite as well as the receive module of the corresponding ground station.

    Link to the press release from September 6, 2021: https://www.iaf.fraunhofer.de/en/media-library/press-releases/satellite-transmit...


    More information:

    https://www.iaf.fraunhofer.de/en/media-library/press-releases/beacon-project.htm...


    Images

    The W-band receive module is intended to enable low-noise data transmission in satellite communications in the future—such as in the W-Cube nanosatellite shown here.
    The W-band receive module is intended to enable low-noise data transmission in satellite communicati ...

    Fraunhofer IAF

    Similar RF module developed at Fraunhofer IAF.
    Similar RF module developed at Fraunhofer IAF.

    Fraunhofer IAF


    Criteria of this press release:
    Journalists, Scientists and scholars
    Electrical engineering, Physics / astronomy
    transregional, national
    Cooperation agreements, Research projects
    English


     

    Help

    Search / advanced search of the idw archives
    Combination of search terms

    You can combine search terms with and, or and/or not, e.g. Philo not logy.

    Brackets

    You can use brackets to separate combinations from each other, e.g. (Philo not logy) or (Psycho and logy).

    Phrases

    Coherent groups of words will be located as complete phrases if you put them into quotation marks, e.g. “Federal Republic of Germany”.

    Selection criteria

    You can also use the advanced search without entering search terms. It will then follow the criteria you have selected (e.g. country or subject area).

    If you have not selected any criteria in a given category, the entire category will be searched (e.g. all subject areas or all countries).