idw – Informationsdienst Wissenschaft

Nachrichten, Termine, Experten

Grafik: idw-Logo
Grafik: idw-Logo

idw - Informationsdienst
Wissenschaft

Science Video Project
idw-Abo

idw-News App:

AppStore

Google Play Store



Instance:
Share on: 
12/13/2022 17:46

The role of lichens and mosses in climate change

Abteilung 2, Referat Medien- und Öffentlichkeitsarbeit
Universität Hamburg

    An international research team led by the Department of Biology at the Universität Hamburg has investigated the potential impacts of climate change on non-vascular vegetation (mosses, lichens) and their functions in ecosystems worldwide. Based on this, the researchers have developed a concept paper proposing the next important steps for the research field. The results were published in the journal “New Phytologist”.

    The so-called non-vascular photoautotrophs (NVP), including mosses, lichens, terrestrial algae and cyanobacteria, are organisms that receive their energy from light but lack the vascular tissue that transports water and nutrients in vascular plants. Lacking roots, they rely on direct uptake of water from the atmosphere or from the near-surface layer of the soil. Because water loss cannot be actively controlled, the organisms often become dehydrated. However, unlike most vascular plants, NVPs are able to largely adapt their metabolism to these large fluctuations in water content, making them a common form of vegetation in many arid ecosystems, such as deserts, tundras, and high elevations.

    NVP are considered essential for the functioning of ecosystems in many regions of the world since they are, for instance, responsible for about 50% of nitrogen input to natural ecosystems through their association with nitrogen-fixing bacteria, control the partitioning as well as evapotranspiration of precipitation in forests, have an impact on near-ground air temperature, contribute to peatland ecosystems that store an estimated 30% of global soil carbon, or form biocrusts that protect soil surfaces from erosion by water and wind.

    Current research suggests that climate change may pose a significant threat to NVP, with major impacts on many regions of the world. But the extent to which this will affect associated ecosystems is highly uncertain.

    "We found that ecosystem functions of NVP are likely to be significantly affected by climate change and that a better quantitative understanding of some key processes is needed, for example, the potential for acclimation, the response to elevated carbon dioxide, the role of the microbiome, and the feedback from ecosystem changes to climate. We propose an integrative approach with innovative, cross-method laboratory and field experiments and ecophysiological modelling, for which sustained scientific collaboration in NVP research is essential," reports the study's first author, Jun.-Prof. Dr. Philipp Porada of the Department of Biology at the Universität Hamburg.


    Contact for scientific information:

    Jun.-Prof. Dr. Philipp Porada
    Universität Hamburg
    Faculty of Mathematics, Informatics and Natural Sciences
    Department of Biology
    Phone: +49 40 42816-577
    E-mail: philipp.porada@uni-hamburg.de


    Original publication:

    A research agenda for nonvascular photoautotrophs under climate change,
    P. Porada, M. Y. Bader, M. B. Berdugo, C. Colesie, C. J. Ellis, P Giordani, U. Herzschuh, Y. Ma, S. Launiainen, J. Nascimbene, I. Petersen, J. R. Quílez, E. Rodríguez-Caballero, K. Rousk, L. G. Sancho, C. Scheidegger, S. Seitz, J. T. Van Stan, M. Veste, B. Weber, D. J. Weston
    New Phytologist (2022).
    https://doi.org/10.1111/nph.18631


    More information:

    https://www.min.uni-hamburg.de/en/ueber-die-fakultaet/aktuelles/2022/1213-rolle-...


    Images

    lichens and mosses
    lichens and mosses
    Axel Kleidon
    Axel Kleidon, MPI Biogeochemie, Jena


    Criteria of this press release:
    Journalists
    Biology
    transregional, national
    Research projects, Scientific Publications
    English


     

    Help

    Search / advanced search of the idw archives
    Combination of search terms

    You can combine search terms with and, or and/or not, e.g. Philo not logy.

    Brackets

    You can use brackets to separate combinations from each other, e.g. (Philo not logy) or (Psycho and logy).

    Phrases

    Coherent groups of words will be located as complete phrases if you put them into quotation marks, e.g. “Federal Republic of Germany”.

    Selection criteria

    You can also use the advanced search without entering search terms. It will then follow the criteria you have selected (e.g. country or subject area).

    If you have not selected any criteria in a given category, the entire category will be searched (e.g. all subject areas or all countries).