idw – Informationsdienst Wissenschaft

Nachrichten, Termine, Experten

Grafik: idw-Logo
Grafik: idw-Logo

idw - Informationsdienst
Wissenschaft

Science Video Project
idw-Abo

idw-News App:

AppStore

Google Play Store



Instance:
Share on: 
12/21/2022 17:16

Synthetische Daten für die KI-gestützte Wundversorgung

Benedikt Reichel Presse- und Öffentlichkeitsarbeit
Fachhochschule Dortmund

    Das medizinische Problem, das Raphael Brüngel mit seiner kooperativen Promotion an der Fachhochschule Dortmund lösen will, ist ein sehr spezielles. Seine Lösung wird dennoch für viele weitere Bereiche einen bedeutenden Fortschritt darstellen. Raphael Brüngels setzt bei der Wundversorgung an – mit neuronalen Netzwerken für die angewandte Medizin will er die Datengrundlage für KI-gestützte Wundversorgung liefern.

    Wunden können sehr komplexe Gebilde werden, insbesondere, wenn sie chronisch geworden sind. Sie bestehen aus bis zu drei Hauptgewebetypen (Granulation, Fibrinbelag und Nekrosen), deren Kombinationsvielfalt vermutlich die der Farben in Renaissancegemälden übertrifft. Jede Wunde ist einzigartig. Ihre sichere Einordnung ist komplex.

    Genauso einzigartig ist ihr Heilungsverlauf. Hierbei spielen zahlreiche individuelle und medizinisch relevante Faktoren eine Rolle – Lebensalter, allgemeine Verfassung, Vorerkrankungen wie Diabetes und viele mehr. Eine Wunde, deren Heilung länger als drei Monate dauert, gilt als chronisch. Ihre Behandlung ist besonders anspruchsvoll, es drohen zum Beispiel Infektionen, die mit Gewebeverlust einhergehen können. Gegebenenfalls vorhandene Durchblutungsstörungen können die Selbstheilungsfähigkeiten weiter einschränken. Rückschläge gehören selbst bei guter Versorgung zum Alltag.

    In der Praxis haben Pflegende nicht genug Zeit, um jede Wunde regelmäßig bis ins Detail zu untersuchen und den Heilungsprozess zu dokumentieren. Deswegen wird an KI-gestützten Lösungen gearbeitet, die Frühstadienerkennung, Zustands- und Gewebeklassifikation, Verlaufsanalyse und Dokumentation erleichtern.

    Der wunde Punkt der Datensätze

    Doch Lösungsansätze fahren bisher mit angezogener Handbremse. Ihre erlernte Expertise speist sich aus möglichst vielen und vielfältigen Fotos von Wunden mit passenden Informationen. Für die Forschung verfügbare Datensätze sind rar und von wechselhafter Güte.

    Und inhaltlich unausgewogen: Bestimmte Ausprägungen wie zum Beispiel Wunden mit abgestorbenem („nekrotischem“) Gewebe sind viel zu selten vertreten, als dass die KI ihre volle Leistungsfähigkeit erreichen kann. Zudem mangelt es an dunkleren Hauttypen in medizinischen Datensätzen.

    Neuronales Netzwerken

    Hier setzt Brüngel an. Er will diese schlecht bestückten Bereiche der Datensätze auffüllen, und zwar mithilfe spezieller neuronaler Netze: Diese hochentwickelten Technologien heißen „Generative Adversarial Networks“ (GANs) und sind in der Lage, sich realistisch wirkende Darstellungen „auszudenken“ sowie echte Bilder in andere Darstellungen zu „übersetzen“ – und zwar für den Anwendungsfall von Wundbildern genau jene, die in den Datensätzen Mangelware sind. Solche künstlich erzeugten Bilder werden im Fachjargon als „synthetisch“ bezeichnet. Um sie zu erschaffen, müssen entsprechende GAN-Modelle gelernt und verstanden haben, was das Wesen dieser unterrepräsentierten Wunden ist. So magisch dies klingt, so bodenständig ist es letztendlich: Alles geht auf kluge Statistiken zurück.

    Das ist es, was Brüngel tut: Er entwickelt einerseits Methoden und Strategien, die GANs dazu befähigen, Wund-Darstellungen zu erschaffen, die den höchsten Ansprüchen genügen. Andererseits erforscht er die Potenziale und Grenzen dieser Technologie im Kontext der Optimierung von Anwendungen.


    Contact for scientific information:

    Raphael Brüngel
    Fachhochschule Dortmund
    Fachbereich Informatik
    Telefon: +49 (0) 231 9112-6727
    E-Mail: raphael.bruengel@fh.dortmund.de


    Images

    Raphael Brüngel forscht auf dem Gebiet der medizinischen Bildanalyse.
    Raphael Brüngel forscht auf dem Gebiet der medizinischen Bildanalyse.
    Tilman Abegg
    Fachhochschule Dortmund


    Criteria of this press release:
    Journalists, Scientists and scholars, Students
    Information technology, Medicine
    transregional, national
    Research projects, Transfer of Science or Research
    German


     

    Help

    Search / advanced search of the idw archives
    Combination of search terms

    You can combine search terms with and, or and/or not, e.g. Philo not logy.

    Brackets

    You can use brackets to separate combinations from each other, e.g. (Philo not logy) or (Psycho and logy).

    Phrases

    Coherent groups of words will be located as complete phrases if you put them into quotation marks, e.g. “Federal Republic of Germany”.

    Selection criteria

    You can also use the advanced search without entering search terms. It will then follow the criteria you have selected (e.g. country or subject area).

    If you have not selected any criteria in a given category, the entire category will be searched (e.g. all subject areas or all countries).