idw - Informationsdienst
Wissenschaft
Was sorgt dafür, dass Knochen gut auf Belastung reagieren? Ein Team der Charité Berlin hat Hinweise auf die Schlüsselfunktion von nicht-kollagenen Eiweißverbindungen entdeckt und wie sie den Knochenzellen helfen, auf äußere Belastungen zu reagieren. An Fischmodellen untersuchten die Forschenden Knochenproben mit und ohne Knochenzellen, um Unterschiede in Mikrostruktur und Wassereinlagerung aufzuklären. Am Berliner Forschungsreaktor BER II gelang es ihnen erstmals, die Wasserdiffusion durch das Knochenmaterial genau zu messen - mit einem überraschenden Ergebnis.
Vor rund 500 Millionen Jahren entwickelten sich in den Meeren Fische mit einem Innenskelett und einer biegsamen Wirbelsäule. Sie bestand aus einem Nanokomposit aus Fasern und Mineralien. Diese "Erfindung" der Evolution war so erfolgreich, dass die Grundstruktur auch für spätere Wirbeltiere an Land übernommen wurde. Während alle Landwirbeltiere grundsätzlich Knochen mit Knochenzellen (Osteozyten) besitzen, entwickelte sich in bestimmten Fischarten ein noch energieeffizienteres Material: Knochen ohne Knochenzellen, zum Beispiel bei Fischen wie Lachs, Medaka oder Tilapia.
"Wir haben uns gefragt, wie sich Knochenproben mit und ohne Knochenzellen in ihrer Mikrostruktur und ihren Eigenschaften unterscheiden", sagt Dr. Paul Zaslansky. Er leitet an der Charité Berlin eine Forschungsgruppe, die sich auf mineralisierte Biomaterialien wie Zähne und Knochen spezialisiert hat. Mit der Doktorandin Andreia Silvera und internationalen Partnern hat Zaslansky nun Knochenproben von Zebrafischen und Medakas verglichen. Beide Fischarten besitzen in etwa die gleiche Größe und leben unter ähnlichen Bedingungen, so dass ihre Skelette vergleichbaren Belastungen standhalten müssen. Doch während Zebrafische Knochenzellen haben, hat das Skelett von Medaka keine.
"Die Funktion von Knochenzellen in Knochen und wie sie sich mit dem Alter verändern ist für die alternde Bevölkerung von großem Interesse, das ist der Hintergrund unserer Fragestellung", erklärt Silvera. Knochenzellen können auf physischen Stress reagieren, indem sie biochemische Signale aussenden: Diese Signale lösen dann Bildung oder Resorption von Knochengewebe aus, so dass der Knochen der Belastung besser standhalten kann. Mit zunehmendem Alter oder bei Krankheiten wie Osteoporose scheint dieser Mechanismus jedoch nicht mehr zu funktionieren. "Mit unserer Grundlagenforschung wollen wir herausfinden, wie sich Knochen mit und ohne Knochenzellen unterscheiden und mit den Herausforderungen äußerer Belastungen umgehen", sagt Zaslansky.
Knochen haben eine komplexe Struktur: Sie bestehen aus Nanofasern aus Kollagen und Nanopartikeln aus Mineralien, aber auch aus anderen kleinen Bestandteilen. Bestimmte Eiweißverbindungen, so genannte Proteoglykane (PGs), sind in ein Gewebe aus Kollagenfasern und Nanokristallen eingebettet und spielen eine wichtige Rolle beim Aufbau und Erhalt des Gewebes. "PGs können mit dem Salz in der Suppe verglichen werden. Zu wenig oder zu viel davon ist nicht gut", sagt Zaslansky. Die PGs können Wasser binden. In gesundem Knorpel gibt es reichlich PGs, die ihn so elastisch wie einen Schwamm machen. Zusammen bilden diese Komponenten eine extrazelluläre Matrix (ECM), eine 3D-Struktur, die für Festigkeit und Elastizität sorgt und die Funktion über viele Jahre hinweg gewährleistet. Im Knochen entsteht in dieser 3D-Struktur ein offenes Netzwerk (Lacunar Channel Network oder LCN) aus Kanälen und Poren mit Durchmessern von einigen hundert Nanometern bis zu Mikrometern. Dieses LCN beherbergt die Knochen-Osteozyten, Zellen, die die Belastung spüren und den Knochenumbau steuern. Im LCN und im Nanokomposit enthält der Knochen bis zu 20% seines Volumens an Wasser, das verschiedene Funktionen erfüllt, darunter die Anpassung an mechanische Belastungen.
Um die Menge des eingelagerten Wassers zu bestimmen, nutzte das Team die Methode der Neutronentomographie am Berliner Experimentierreaktor BER II* am HZB: Dabei tauchten sie die Knochenproben zunächst in Wasser und durchleuchteten sie mit Neutronen, um sie anschließend in deuteriertem schwerem Wasser (D2O) zu sättigen. Aus den 3D-Daten dieser Neutronen-Tomographien konnte der Unterschied zwischen den beiden Knochenzuständen ermittelt werden. Das Team bestimmte so für jeden Wirbel der Wirbelsäule die genaue Menge des durch die Diffusion des D2O verdrängten Wassers. "Außerdem untersuchten wir Schnitte der Knochenproben, analysierten sie mit Elektronenmikroskopie und Mikro-CT und bestimmten die PG-Konzentration mit Raman-Spektroskopie", erklärt Silvera.
Bisher war man davon ausgegangen, dass beide Knochentypen in etwa die gleichen Mengen an Wasser enthalten und eine sehr ähnliche Zusammensetzung und Eigenschaften aufweisen. Tatsächlich aber zeigte die Neutronenuntersuchung, dass das Knochenmaterial von Zebrafischen nur halb so viel Wasser freisetzt wie das von Medaka. Dies ist umso überraschender, als diese Knochen eine sehr ähnliche Mikrostruktur aus mineralisierten Kollagenfasern aufweisen, Zebrafische aber auch große Zellzwischenräume innerhalb des LCN enthalten. "Meine erste Reaktion war: 'Das muss falsch sein!' Also haben wir alles gründlich überprüft und festgestellt, dass es wirklich revolutionär ist", erinnert sich Zaslansky.
Die einzige Erklärung für den Unterschied ist, dass sich die Knochenmatrizen der beiden Spezies in einer grundlegenden Komponente unterscheiden, die die Wasserdurchlässigkeit beeinflusst. Und hier zeigen sowohl die histologischen Untersuchungen als auch die Raman-Spektroskopie: Es ist der kleine, aber wichtige Beitrag der PGs. Die Medaka-Proben enthalten viel weniger PG als die Zebrafisch-Proben. "Das ist eine neue Erkenntnis: Obwohl beide Fische ähnlichen Belastungen ausgesetzt sind, hat ihr Knochenmaterial nicht die gleichen Wasserdurchlässigkeitseigenschaften", sagt Silveira.
"Wir hoffen, dass diese Ergebnisse dazu beitragen werden, auch Knochenerkrankungen besser zu verstehen", sagt Zaslansky. Warum können manche Knochen besser auf Belastungen reagieren als andere? Was geschieht, wenn die Knochen altern? Könnte es sein, dass sie PGs verlieren und weniger wasserdicht werden? Vielleicht verändert das Altern oder eine Krankheit wie Osteoporose den Knochen, der die Knochenzellen umgibt, und erschwert so den Umbau und die Bildung von Knochengewebe, das richtig funktioniert?
*Anmerkung:
Nach 40 Jahren erfolgreicher Neutronenforschung in Berlin-Wannsee wurde der Forschungsreaktor BER II Ende 2019 planmäßig abgeschaltet. Bis heute arbeiten Teams noch an der Auswertung vieler Experimente.
Prof. Dr. Paul Zaslansky
Charité Berlinpaul.zaslansky@charite.de
Materials & Design (2022):
Water flow through bone: Neutron tomography reveals differences in water permeability between osteocytic and anosteocytic bone material
Andreia Silveira, Nikolay Kardjilov, Henning Markötter, Elena Longo, Imke Greving, Peter Lasch, Ron Shahar, Paul Zaslansky.
DOI: 10.1016/j.matdes.2022.111275
Criteria of this press release:
Journalists, Scientists and scholars, Students
Biology, Materials sciences, Medicine
transregional, national
Research results, Transfer of Science or Research
German
You can combine search terms with and, or and/or not, e.g. Philo not logy.
You can use brackets to separate combinations from each other, e.g. (Philo not logy) or (Psycho and logy).
Coherent groups of words will be located as complete phrases if you put them into quotation marks, e.g. “Federal Republic of Germany”.
You can also use the advanced search without entering search terms. It will then follow the criteria you have selected (e.g. country or subject area).
If you have not selected any criteria in a given category, the entire category will be searched (e.g. all subject areas or all countries).